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Abstract

For a positive integer r and graphs F , G, and H, the graph Ramsey arrow notation

F −→ (G)H
r means that for every r-colouring of the subgraphs of F isomorphic to

H, there exists a subgraph G′ of F isomorphic to G such that all the subgraphs of

G′ isomorphic to H are coloured the same. Graph Ramsey theory is the study of the

graph Ramsey arrow and related arrow notations for other kinds of “graphs” (e.g.,

ordered graphs, or hypergraphs). This thesis surveys finite graph Ramsey theory,

that is, when all structures are finite.

One aspect surveyed here is determining for which G, H, and r, there exists an

F such that F −→ (G)H
r . The existence of such an F is guaranteed when H is

complete, whether “subgraph” means weak or induced, and existence results are

also surveyed when H is non-complete. When such an F exists, other aspects are

surveyed, such as determining the order of the smallest such F , finding such an F

in some restricted family of graphs, and describing the set of minimal such F ’s.
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7.3 A Burr-Erdős conjecture . . . . . . . . . . . . . . . . . . . . . . . . 158

7.4 Arrangeable graphs are linear Ramsey . . . . . . . . . . . . . . . . 162

7.5 d-degenerate graphs are quadratic Ramsey . . . . . . . . . . . . . . 166

7.6 Ramsey-size linear graphs . . . . . . . . . . . . . . . . . . . . . . . 182

8 Restricted Ramsey theorems 184

8.1 Graphs arrowing K3 . . . . . . . . . . . . . . . . . . . . . . . . . . 184

8.2 Folkman Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
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Chapter 1

Introduction

This introduction briefly introduces Ramsey theory on graphs and outlines the

structure of this thesis.

1.1 Notation

Unless otherwise stated, all variables are integers. Notation used in this thesis is,

for the most part, standard. For notation used in graph theory, see Appendix A.

Denote the integers by Z = {. . . ,−2,−1, 0, 1, 2, . . .}, and the positive integers by

Z+. For any a ≤ b, let [a, b] = {x ∈ Z : a ≤ x ≤ b}. The cardinality of a set S is

denoted |S|, a set containing k elements is called a k-set, and the set of all k-sets

1



1.1. Notation 2

contained in some set S is denoted [S]k = {S ′ ⊆ S : |S ′| = k}. For simplicity, write

[a, b]k for [[a, b]]k.

For any set S, and any r ∈ Z+, an r-partitionof S is a set {S1, . . . , Sr} of disjoint

subsets of S such that S1 ∪ · · · ∪ Sr = S. The Si’s are called partite sets (or

partition classes) and (in this thesis) are usually non-empty. If S and C are sets

with |C| = r ≥ 2, any function ∆ : S → C is an r-colouring of S, and the elements

of C are called colours . In Ramsey theory, the Greek letter ∆ is often used to

denote a colouring. For each i ∈ C, ∆−1(i) ⊆ S is called a colour class , and any

subset of a colour class is said to be monochromatic. For example, if S = {a, b, c},

C = {red, blue}, and ∆(a) = ∆(c) = red, and ∆(b) = blue, then the colour classes

are {a, c} and {b}. Note that every r-colouring induces an r-partition, though many

distinct r-colourings induce the same r-partition. Often the elements of C are not

important, and so for convenience, when r = 2, C = {red, blue} is commonly used,

and when r > 2, C = [1, r] is commonly used. The letter r is used throughout this

thesis to denote a number of colours, and in such a context should always be at

least two to avoid trivialities.
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1.2 Pigeonhole principle and Ramsey’s theorem

The pigeonhole principle is a basic tool in Ramsey theory, and is itself now consid-

ered the simplest “Ramsey-type” theorem.

Theorem 1.2.1 (Pigeonhole principle). If at least mr + 1 objects are partitioned

into r (possibly empty) subsets, at least one subset contains m + 1 elements.

The pigeonhole principle can be restated in various ways, e.g.:

(a) If S is a set with |S| ≥ mr + 1, and S = S1 ∪ · · · ∪ Sr is a partition of S, then

there exists i ∈ [1, r] such that |Si| ≥ m + 1.

(b) If ∆ : [1,mr+1] → [1, r], then there exists i ∈ [1, r] such that |∆−1(i)| ≥ m+1.

Theorem 1.2.2 (Infinite pigeonhole principle). For every finite colouring of an

infinite set, there exists a colour class which is infinite.

Two theorems due to Ramsey generalize the finite and infinite versions of the pi-

geonhole principle to the colouring of k-sets, rather than just singletons (the proofs

appear in Chapter 2).

Theorem 1.2.3 (Ramsey’s theorem for finite sets, 1930 [126]). For all m, k, r ∈

Z+, there exists n ∈ Z+ such that for every n-set N , and for every r-colouring

∆ : [N ]k → [1, r] of the k-subsets of N , there exists M ∈ [N ]m such that [M ]k is

monochromatic.



1.2. Pigeonhole principle and Ramsey’s theorem 4

Denote the least such n by Rk(m; r). Note that since Z+ is well-ordered, the ex-

istence of such an n is equivalent to the existence of a least such n. Therefore,

from this point on, theorems which guarantee the existence of a positive integer are

stated as guaranteeing the existence of the least such positive integer.

Theorem 1.2.4 (Ramsey’s theorem for infinite sets, 1930 [126]). For every k, r ∈

Z+, every infinite set X, and every ∆ : [X]k → [1, r], there exists an infinite set

Y ⊆ X such that [Y ]k is monochromatic.

When k = 1, the two versions of Ramsey’s theorem are exactly the two versions of

the pigeonhole principle. Ramsey’s theorem for finite sets, referred to from this point

on as simply “Ramsey’s theorem”, is central to this thesis. In Ramsey theory, it is

common practice to put a semicolon before the number of colours (e.g., Rk(m; r)).

While semicolons may be used in different contexts as well, the number of colours

will always be separated by a semicolon.

An “arrow notation” (known as a “Ramsey arrow”) is used to simplify statements

that are similar to Ramsey’s theorem. This Ramsey arrow was introduced by Erdős

and Rado in 1953 [46]. For positive integers n, m, k and r, write

n −→ (m)k
r (1)

if for every n-set N , and for every ∆ : [N ]k → [1, r], there exists M ∈ [N ]m such

that [M ]k is monochromatic. At this point it can be pointed out that Ramsey-
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type theorems can be hard to read and understand at first due to the number of

alternating quantifiers. For example, there are a total of four quantification switches

in Ramsey’s theorem (stated below for colouring the integers):

∀m, k, r ∈ Z+,∃n ∈ Z+ s.t. ∀∆ : [1, n]k → [1, r],∃i ∈ [1, r] and S ∈ [1, n]m s.t.

∀S ′ ∈ [S]k, ∆(S ′) = i.

Using the arrow notation, Ramsey’s theorem can be restated briefly:

Theorem (Ramsey’s theorem restated). For all m, k, r ∈ Z+, there exists a least

integer n = Rk(m; r) such that n −→ (m)k
r .

1.3 Ramsey’s theorem for graphs

The arrow notation (1) has been generalized to graphs in many ways. The main

idea is to let F be a “large” graph, G be a “medium sized” graph, and H a “small”

graph (see Figure 1.1). For now, a “copy” of H in G means a subgraph (either weak

or induced depending on context) of G isomorphic to H. If for every r-colouring of

the copies of H in F , there is a copy G′ of G in F such that every copy of H in G′

is the same colour, then write

F −→ (G)H
r . (2)
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Figure 1.1: Visualizing Ramsey theory for graphs

The field of “Graph Ramsey theory” is essentially the study of aspects of various

graph Ramsey arrows. For any n ∈ Z+, let Kn denote the complete graph on n

vertices (every pair of vertices is an edge). Since the copies of Kk inside Kn are in

one-to-one correspondence with the k-subsets of an n-set, Ramsey’s theorem can be

restated in terms of graphs.

Theorem (Ramsey’s theorem—graph theoretic version). For all m, k, r ∈ Z+, there

exists a least integer n = Rk(m; r) such that

Kn −→ (Km)Kk
r .

There are two camps of thought regarding this arrow notation (2): those who

primarily work in the induced case, and those who primarily work in the weak (or

not necessarily induced) case. Neither group wants to use extra notation, and so

those of the induced camp use “−→” for the induced case, while those studying in
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the weak area use “−→” for the weak case. The standard is often viewed as using

“−→” for the induced case (see, e.g., [102]). However, the weak case is discussed

more in this work than the induced case, and therefore “−→” is used in this thesis

when all subgraphs are weak. Therefore, in this work, the arrow notation (2) is

referred to as the “weak graph Ramsey arrow”. When the subgraphs of interest

must be induced, another arrow notation

F
ind−→ (G)H

r (3)

is used, referred to as the “induced graph Ramsey arrow” (also known as the “strong

graph Ramsey arrow”).

1.4 Structure of this thesis

All results presented in this thesis are found in the literature.

Some proofs of Ramsey’s theorem are presented first in Chapter 2. Chapter 3

surveys results on finding and bounding the numbers Rk(m; r) (defined in Ramsey’s

theorem). As well, in Chapter 3, an “off-diagonal” version of the Ramsey numbers

is introduced. For any k, r,m1, . . . ,mr ∈ Z+, let Rk(m1, . . . , mr) denote the least

integer n such that for every n-set N , and for every ∆ : [N ]k → [1, r], there exists

i ∈ [1, r] and Mi ∈ [N ]mi such that [Mi]
k is monochromatic under ∆. Chapter 3
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also surveys known results on finding and bounding the numbers Rk(m1,m2).

For any r ∈ Z+, and for any graphs G and H, let R(G; H; r) denote the least integer

n (if such an integer exists) such that

Kn −→ (G)H
r

(an additional semicolon is used in the notation R(G; H; r), but a semicolon is

still used to separate the number of colours). Ramsey’s theorem then says that

for all k, m, r ∈ Z+, R(Km; Kk; r) exists (since R(Km; Kk; r) = Rk(m; r)). Note

that for any graph G on m vertices, G ⊆ Km, and therefore if n = R(Km; Kk; r)

then Kn −→ (G)Kk
r . Thus for any graph G with m vertices, and any k, r ∈ Z+,

R(G; Kk; r) exists, and R(G; Kk; r) ≤ R(Km; Kk; r). The numbers R(G; H; r), when

they exist, are known as weak graph Ramsey numbers . In Chapter 4, the problem

of determining for any graph G the value R(G; K2; 2) is discussed, the numbers

R(G; Kk; r) are generalized to an off-diagonal version, and some results are surveyed

for determining values in this off-diagonal version.

Note: throughout this thesis, in order to prove that a least positive integer X

exists satisfying some Ramsey property (as is done above), a phrase similar to the

following is written: “it suffices to show that X ≤ Y ”. This means that it suffices

to show that the positive integer Y satisfies the same Ramsey property, and since

X is the least such positive integer, it follows that X exists and X ≤ Y .
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The main result of Chapter 5 is that for all k, r ∈ Z+, and for any graph G, there

exists a graph F such that F
ind−→ (G)Kk

r . Little is known about the minimum

number of vertices in such an F when G is not complete.

Arrow notations (both weak and strong) may also be generalized to hypergraphs,

ordered graphs, and ordered hypergraphs in natural ways. Another variation of the

arrow notation for graphs used in this thesis is adding the subscript “part” to an

arrow notation (e.g., “−→part”), which means that for some k ∈ Z+, only k-partite

graphs and subgraphs are of interest (F , G, and H are all k-partite). Another arrow

“
ind−→ord” introduced in Section 5.8 deals with Ramsey theory questions regarding

orderings rather than colourings (rather than colouring ordered hypergraphs as one

might expect).

Some needed concepts of extremal graph theory are given in Chapter 6. Chapter 7

considers families of graphs (e.g., graphs with bounded degree) whose weak graph

Ramsey numbers grow linearly.

For a graph G, and r ∈ Z+, the problem considered in Chapter 8 is finding a graph

F contained in some restricted set of graphs (e.g., triangle-free graphs) such that

F −→ (G)K2
r . Such questions form so-called “restricted graph Ramsey theory”.

The problem of describing the set of (vertex or edge) minimal graphs F so that

F −→ (G)K2
r is discussed in Chapter 9.



1.4. Structure of this thesis 10

Before Chapter 10, the subgraphs being coloured (the H’s) are complete. When H

is not complete, there are examples of G, H, and r such that for every graph F ,

F 6−→ (G)H
r . Chapter 10 contains a theorem characterizing those triples (G,H, r)

for which there exists a graph F such that F −→ (G)H
r (Theorem 10.2.3).



Chapter 2

Ramsey’s theorem

2.1 Introduction

Ramsey theory is named for Frank Plumpton Ramsey (1903–1930), a British math-

ematician who attended the University of Cambridge. For accounts of Ramsey’s

life, and contributions to science, see e.g., [10, 81, 91, 97, 98], and for collections of

Ramsey’s works, see [127, 128, 129]. For convenience, the finite version of Ramsey’s

theorem is repeated here.

Theorem (Ramsey’s theorem, given as Theorem 1.2.3). For all m, k, r ∈ Z+, there

exists a least integer n = Rk(m; r) such that for every n-set N , and for every r-

colouring ∆ : [N ]k → [1, r], there exists M ∈ [N ]m such that [M ]k is monochromatic.

11
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The purpose of this chapter is to present three proofs of Ramsey’s theorem for finite

sets (none of which seem to follow Ramsey’s original proof of Ramsey’s theorem for

finite sets), a proof of Ramsey’s theorem for infinite sets, a closely related problem

in geometry (known as the “n-gon problem”), and the Paris-Harrington theorem, a

generalization of Ramsey’s theorem which demonstrates a surprising fact from logic

that there are statements true in Peano arithmetic that are not provable within

Peano arithmetic.

2.2 Direct proof by induction

The idea in the following first proof of Ramsey’s theorem (for finite sets), follows the

same idea as the original proof of Ramsey’s theorem for infinite sets, and therefore,

this proof is usually attributed to Ramsey himself, though he did not explicitly

present it.

First proof of Ramsey’s theorem (as given by Nešetřil [102, p. 1334]). This

proof of Ramsey’s theorem is by induction on k. For each k ∈ Z+, let S(k) be the

statement that for all m, r ∈ Z+, Rk(m; r) exists (note that when m = 1 or r = 1,

the theorem is trivial, so one can assume that m ≥ 2 and r ≥ 2).

Base Case: By the pigeonhole principle, R1(m; r) = r(m − 1) + 1, and therefore
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S(1) holds.

Inductive Step: Let k ≥ 2, and assume that S(k − 1) holds. Let m, r ∈ Z+ and

let t = R1(m; r). For i ∈ [1, t], define si recursively by setting s1 = 1, and for each

i ∈ [1, t− 1], let si+1 = Rk−1(si; r) + 1. It suffices to show that Rk(m; r) ≤ st.

Let n = st, let N be a well-ordered n-set, and let ∆ : [N ]k → [1, r]. In this proof,

a set Y = {y1 < y2 < · · · < yt} ∈ [N ]t is constructed inductively so that there

exists a set Y ′ ∈ [Y ]m that is monochromatic under ∆. Let y1 = min N , and

define ∆1 : [N \ {y1}]k−1 → [1, r] by ∆1(A) = ∆(A ∪ {y1}). By the definition of

n = Rk−1(st−1; r) + 1, there exists a set X1 ⊆ N \ {y1} such that |X1| = st−1 and

[X1]
k−1 is monochromatic in the colour c1 under ∆1.

Let i ∈ [1, t− 1], and assume that y1, . . . , yi ∈ N , c1, . . . , ci ∈ [1, r], and Xi ⊆ · · · ⊆

X1 ⊆ N have already been defined such that |Xi| = st−i = Rk−1(st−i−1; r) + 1.

Let yi+1 = min Xi, and define ∆i+1 : [Xi \ {yi+1}]k−1 → [1, r] by ∆i+1(X) =

∆(X ∪ {yi+1}). Then by the definition of st−i, there exists Xi+1 ⊆ Xi \ {yi+1} such

that |Xi+1| = st−i−1 and [Xi+1]
k−1 is monochromatic in the colour ci+1 under ∆i+1.

This completes the inductive definition of Y = {y1, y2, . . . , yt} (see Figure 2.1).

Let ∆Y : Y → [1, r] be defined by ∆Y (yi) = ci. Then by the definition of t, there

exists Y ′ ⊆ Y , |Y ′| = m, such that Y ′ is monochromatic under ∆Y . Then by the

construction of the yi’s, [Y ′]k is monochromatic under ∆.
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Figure 2.1: Constructing the set {y1, y2, . . .}

2.3 Ramsey’s theorem for infinite sets

Ramsey’s theorem for infinite sets is restated for convenience, and is proved in this

section. The proof given here nearly duplicates the first proof of Ramsey’s theorem

given in Section 2.2.

Theorem (Ramsey’s theorem for infinite sets, given as Theorem 1.2.4). For every

k, r ∈ Z+, every infinite set X, and every ∆ : [X]k → [1, r], there exists an infinite

set Y ⊆ X such that [Y ]k is monochromatic.

Proof. This proof is by induction on k. For any k ∈ Z+, let S(k) be the statement

that for all r ∈ Z+, for any countably infinite set X, and for every r-colouring

∆ : [X]k → [1, r], there exists an infinite set Y ⊆ X such that ∆ is constant on

[Y ]k.

Base Case: The statement S(1) is the infinite pigeonhole principle, and thus S(1)

holds.

Inductive Step: Let k ≥ 1, and assume that S(k) holds. It remains to show that
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S(k + 1) holds. Let X = {x1 ≤ x2 ≤ x3 ≤ · · · } be a countable well-ordered infinite

set. Let ∆ : [X]k+1 → [1, r]. An infinite sequence of vertices y1, y2, . . . ∈ X is

constructed inductively such that Y = {y1, y2, . . .} contains an infinite set Y ′ such

that [Y ′]k+1 is monochromatic under ∆.

Let y1 = x1. Define the colouring ∆1 : [X \ {y1}]k → [1, r] as follows: for P ∈

[X \ {y1}]k, ∆1(P ) = ∆(P ∪ {y1}). Then, since S(k) is true, there exists an infinite

set X1 ⊆ X \ {y1} such that ∆1 is constant on [X1]
k, and therefore ∆ is constant,

in say colour c1, on {A ∪ {y1} : A ∈ [X1]
k}.

Let j ≥ 1, and assume that yj, Xj, cj, and ∆j have already been defined. Let yj+1

be the least element in Xj. Define the colouring ∆j+1 : [Xj \ {yj+1}]k → [1, r] as

follows: for P ∈ [Xj \ {yj+1}]k, let ∆j+1(P ) = ∆(P ∪ {yj+1}). Then since S(k) is

true, there exists an infinite set Xj+1 ⊆ Xj \ {yj+1} such that ∆j+1 is constant on

[Xj+1]
k, and therefore ∆ is constant on {A∪ {yj+1} : A ∈ [Xj+1]

k}. This completes

the inductive construction.

Let Y = {y1, y2, . . .}, and let ∆Y : Y → [1, r] be defined as ∆Y (yi) = ci. By the

infinite pigeonhole principle, there exists an infinite set Y ′ ⊆ Y monochromatic

under ∆Y . By the construction of the yi’s, ∆ is constant on [Y ′]k+1. Therefore

S(k + 1) holds.

Therefore by mathematical induction, for all n ∈ Z+, S(n) holds.
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Ramsey’s theorem for infinite sets can be reworded in terms of graph theory. Let

Kℵ0 denote the complete graph with a countably infinite vertex set.

Theorem (Ramsey’s theorem for infinite sets–restated for graphs). For all k, r ∈

Z+, Kℵ0 −→ (Kℵ0)
Kk
r .

2.4 Two colours implies r colours

In order to simplify the next two proofs of Ramsey’s theorem, the following propo-

sition is presented first. The proof uses a so-called “colour grouping” argument. For

convenience, let Rk(m) denote Rk(m; 2).

Proposition 2.4.1 (Ramsey, 1930 [126]). Let k ∈ Z+. If for all m ∈ Z+, Rk(m)

exists, then for all r > 2, Rk(m; r) exists as well.

Proof. Let k ∈ Z+, and assume that for all m ∈ Z+, Rk(m) exists. The proof of

Proposition 2.4.1 is by induction on r. For any r ≥ 2, let S(r) be the statement

that for all m ∈ Z+, Rk(m; r) exists.

Base Case: The above assumption is exactly S(2).

Inductive Step: Let r ≥ 2, and assume that S(r) holds. By S(2), let M = Rk(m),

and by S(r), let n = Rk(M ; r). To show that Rk(m; r + 1) exists, it suffices to

show that for n = Rk(M ; r), that n −→ (m)k
r+1. Let X be any n-set, and let
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∆ : [X]k → [1, r + 1]. Define ∆′ : [X]k → [1, r] by

∆′(T ) =





∆(T ) if ∆(T ) ∈ [1, r − 1],

r if ∆(T ) ∈ [r, r + 1].

By definition of n, there exists an Y ∈ [X]M and i ∈ [1, r] such that [Y ]k is mono-

chromatic in the i-th colour. If i ∈ [1, r − 1], then [Y ]k is monochromatic under

∆ as well, which is more than sufficient to prove the proposition. If i = r, then

∆ restricted to [Y ]k is a 2-colouring, and by the definition of M , there exists a

Y ′ ∈ [Y ]m monochromatic under ∆. Therefore S(r + 1) holds.

Thus by induction, for all r ∈ Z+, S(r) holds.

Proposition 2.4.1 shows that, in order to prove Ramsey’s theorem, it suffices to

prove only the r = 2 case. The above colour graphing argument is commonly used

in Ramsey theory and can be used in many other situations.

2.5 Infinite implies finite

A second proof of Ramsey’s theorem that uses Ramsey’s theorem for infinite sets,

together with a standard theorem from graph theory known as König’s infinity

lemma, is presented here.
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Recall that an infinite tree is locally finite if and only if the degree of every vertex

is finite. For the definition of a rooted tree, and other standard definitions in graph

theory, the reader is referred to Appendix A.

Theorem 2.5.1 (König’s infinity lemma, 1927 [86]). Every infinite locally finite

rooted tree contains an infinite path starting from the root.

Proof. Let T be an infinite locally finite tree, rooted at v1. By the infinite pigeon-

hole principle, at least one branch of T (a component of T \ {v1}), call it T1, is

infinite. Let v2 be the vertex in N(v1) ∩ V (T1). Then T1 is an infinite locally finite

tree rooted at v2.

Let k ≥ 1, and assume that the path v1, . . . , vk has already been constructed, and

the infinite locally finite tree Tk−1 has been defined, rooted at vk. By the infinite

pigeonhole principle, at least one branch of Tk−1, call it Tk, is infinite. Let vk+1 be

the vertex in N(vk) ∩ V (Tk). This completes the inductive construction, and the

set {v1, v2, . . .} forms an infinite path starting at the root.

The following proof seems to have been first mentioned by Erdős and Szekeres [48]

in 1935.

Second proof of Ramsey’s theorem. By Proposition 2.4.1, it suffices to prove

the r = 2 case. Let k, m ∈ Z+. For any set X, and any 2-colouring ∆ : [X]k →
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{red, blue}, ∆ is a bad colouring of X iff there is no M ∈ [X]m monochromatic

under ∆. By Ramsey’s theorem for infinite sets, there are no bad colourings when

X is an infinite set.

Assume that for some particular k,m ∈ Z+, Rk(m) does not exist. Then for any

finite set X, there exists a bad colouring of X (by definition, the “empty colouring”,

the colouring which has the empty set as its domain, is also considered a bad

colouring). Consider the sets {[1, n] : n ∈ Z+}. For any bad colouring ∆ on [1, n]k,

∆′ = ∆|[1,n−1]k is a bad colouring on [1, n− 1]k. Let T be the tree on the vertex set

V (T ) = {∆ : ∆ is a bad colouring on [1, t], t ∈ Z+ ∪ {0}},

rooted at the empty colouring, with edge set defined as follows: if for some i, j ∈ Z+,

i ≤ j, ∆1 is a bad colouring on [1, i] and ∆2 is a bad colouring on [1, j], then

{∆1, ∆2} ∈ E(T ) if and only if j = i + 1 and ∆2|[1,i] = ∆1. Then T is an infinite lo-

cally finite rooted tree. Therefore by König’s infinity lemma (Theorem 2.5.1), there

exists an infinite path ∆0, ∆1, . . . starting at the root (the empty colouring). This

infinite branch corresponds to a bad colouring ∆∞ : Z+ → {red, blue}, which ex-

tends each of the bad colourings ∆0, ∆1, . . .. The existence of ∆∞ is a contradiction

to Ramsey’s theorem for infinite sets (Theorem 1.2.4).
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2.6 The off-diagonal Ramsey numbers

The next proof of Ramsey’s theorem presented in Section 2.7 involves the following

generalizations of the Ramsey arrow for integers, and the Ramsey number Rk(m).

For n, k, a, b ∈ Z+, write n −→ (a, b)k
2 if for any n-set X, and for any 2-colouring

∆ : [X]k → {red, blue}, there exists either A ∈ [X]a such that [A]k is monochromatic

red, or B ∈ [X]b such that [B]k is monochromatic blue. Let Rk(a, b) denote the

least n (if it exists) such that n −→ (a, b)k
2. When a 6= b, the numbers Rk(a, b) are

sometimes referred to as the “off-diagonal” Ramsey numbers (note that Rk(m) =

Rk(m,m)). The following equivalent off-diagonal version of Ramsey’s theorem is

proved below (the k = 2 case on page 23, and the general case on page 24).

Theorem 2.6.1 (Ramsey’s theorem–off-diagonal version). For all k, a, b ∈ Z+,

Rk(a, b) exists.

Proving Theorem 2.6.1 proves Ramsey’s theorem since for all k, m ∈ Z+, Rk(m) =

Rk(m,m), and Ramsey’s theorem implies the off-diagonal version since for all a, b ∈

Z+, Rk(a, b) ≤ Rk(max{a, b}).

The off-diagonal version of Ramsey’s theorem can be restated for graphs. For graphs

G and H, let
(

G
H

)
denote the set of weak (not necessarily induced) subgraphs of G

that are isomorphic to H (see Appendix A for further graph theoretic notation).

Note that in some works
(

G
H

)
is used to denote the set of induced subgraphs of G
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isomorphic to H (see e.g., [102]).

For any graphs F, G1, G2 and H, write

F −→ (G1, G2)
H
2

if for every ∆ :
(

F
H

) −→ {red, blue}, there exists either G′
1 ∈

(
F
G1

)
such that

(
G′1
H

)

is monochromatic red, or there exists G′
2 ∈

(
F
G2

)
such that

(
G′2
H

)
is monochromatic

blue. One can say that “G is monochromatic” when what is meant is that
(

G
H

)
is

monochromatic.

Theorem (Theorem 2.6.1—restated for graphs). For all k, a, b ∈ Z+, there exists

a least n = Rk(a, b) such that Kn −→ (Ka, Kb)
Kk
2 .

2.7 The Erdős-Szekeres recursion

Using the off-diagonal generalization of the Ramsey numbers defined in Section 2.6,

Erdős and Szekeres produced the following recursive bound, presented first for the

k = 2 case (which corresponds to the colouring of edges), and then for the general k

case. Abbreviate R2(a, b) by simply R(a, b), the most studied off-diagonal Ramsey

numbers.
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2.7.1 Colouring edges

Theorem 2.7.1 (Erdős-Szekeres recursion (k = 2 version), 1935 [48]). Let a, b ∈

Z+, a, b ≥ 2. If R(a, b− 1) and R(a− 1, b) both exist, then

R(a, b) ≤ R(a, b− 1) + R(a− 1, b).

Proof. Assume R(a, b− 1) and R(a− 1, b) exist. Let n = R(a, b− 1) + R(a− 1, b).

It suffices to show that

Kn −→ (Ka, Kb)
K2
2 (2.1)

Let ∆ : E(Kn) → {red, blue}, and fix some v ∈ V (Kn). Let X and Y be the sets

of vertices attached to v by red and blue edges respectively (see Figure 2.2).

Figure 2.2: Proving the Erdős-Szekeres recursion

If |X| ≥ R(a−1, b), then X either contains a blue Kb, in which case (2.1) is satisfied,

or a red Ka−1, which with v forms a red Ka, and (2.1) is again satisfied. So assume

|X| < R(a− 1, b). Then

|Y | = n− 1− |X| = R(a, b− 1) + R(a− 1, b)− 1− |X| > R(a, b− 1)− 1,
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and therefore |Y | ≥ R(a, b − 1). So, Y contains either a red Ka, and (2.1) is

satisfied, or a blue Kb−1, which with v forms a blue Kb, again satisfying (2.1).

Therefore Kn −→ (Ka, Kb)
K2
2 .

Proof of k = 2 case of Ramsey’s theorem (Due to Erdős and Szekeres, 1935

[48]). The proof is by induction on a+b. For any n ∈ Z+, n ≥ 4, let S(n) denote the

statement that for all a, b ∈ Z+ such that a + b = n, R(a, b) exists. If for all n ≥ 4,

S(n) holds, then since for any m ≥ 2, R2(m; 2) = R(m,m), Ramsey’s theorem (for

k = 2) would hold as well.

Base case: When min{a, b} < 2, the theorem is a triviality. When min{a, b} = 2

(which includes the case a + b = 4), R(a, b) = max{a, b}. Therefore S(4) holds.

Inductive Step: Let n ≥ 4, and assume that S(n) holds. Let a, b ≥ 2 be such that

a + b = n + 1. Then by S(n), both R(a − 1, b) and R(a, b − 1) exist, and by the

Erdős-Szekeres recursion,

R(a, b) ≤ R(a− 1, b) + R(a, b− 1).

Therefore R(a, b) exists, and S(n + 1) holds.

By mathematical induction, for all n ≥ 4, S(n) holds, which proves the theorem.
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2.7.2 Colouring larger complete graphs

The Erdős-Szekeres recursion was originally published in the following more general

version.

Theorem 2.7.2 (Erdős-Szekeres recursion (general version), 1935 [48]). Let a, b, k ∈

Z+. If Rk−1(Rk(a− 1, b), Rk(a, b− 1)) exists, then

Rk(a, b) ≤ Rk−1(Rk(a− 1, b), Rk(a, b− 1)) + 1.

Proof. Assume that Rk−1(Rk(a − 1, b), Rk(a, b − 1)) exists. Set p = Rk(a − 1, b),

q = Rk(a, b − 1), n = Rk−1(p, q) + 1, and let X be an n-set. Let ∆ : [X]k →

{red, blue}, fix v ∈ X, and define a colouring ∆′ : [X \ {v}]k−1 → {red, blue} by

∆′(T ) = ∆(T ∪ {v}). By the definition of n, either (a) there exists Y ∈ [X \ {v}]p

such that [Y ]k−1 is monochromatic red under ∆′, or (b) there exists Z ∈ [X \ {v}]q

such that [Z]k−1 is monochromatic blue under ∆′.

If (a) holds, then by definition of p, it can be assumed that there exists Y ′ ∈ [Y ]a−1

such that [Y ′]k is monochromatic under ∆. But then Y ′ ∪ {v} is an a-set such that

[Y ′ ∪ {v}]k is monochromatic red under ∆. The same argument works if (b) holds,

except replacing Y , p, and a by Z, q, and b respectively.

Third Proof of Ramsey’s theorem (Due to Erdős and Szekeres, 1935 [48]). The

proof is by induction on k and a+b. For any fixed k, m ∈ Z+, m ≥ 4, let S(k, m) be
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the statement that for all a, b ≥ 2 such that a + b = m, Rk(a, b) exists. As before,

if for any m ≥ 4 and k ∈ Z+, S(k, m) holds, then since Rk(m; 2) = Rk(m,m),

Ramsey’s theorem would also hold.

Base Cases: By the pigeonhole principle, for all a, b ≥ 2, R1(a, b) = a + b − 1,

and so for all m ≥ 4, S(1,m) holds. For all k ∈ Z+, if min{a, b} ≤ k, then

Rk(a, b) = min{a, b}. Therefore for all k, m ∈ Z+ such that m ≤ 2k, S(k,m) holds.

Inductive Step: Let k ≥ 1, m > max{2k, 5}, and assume that

S(k, m− 1) holds, and (2.2)

for all m′ ≥ 4, S(k − 1,m′) holds. (2.3)

Let a, b ≥ 2 be such that a + b = m. Then by Theorem 2.7.2,

Rk(a, b) ≤ Rk−1(Rk(a− 1, b), Rk(a, b− 1)) + 1. (2.4)

By (2.2), Rk(a− 1, b) and Rk(a, b− 1) both exist, and thus by (2.3), the right hand

side of (2.4) exists. Therefore Rk(a, b) exists, and thus S(k,m) holds.

Thus by induction, for all k, m ∈ Z+, m ≥ 4, S(k, m) holds, which proves the

theorem.
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2.8 The n-gon problem

In 1935, Ramsey’s theorem was applied by Erdős and Szekeres [48] in a geometric

setting, which, according to a number of authors (see, e.g., [65, p. 25] and [121])

helped Ramsey’s theorem grow in popularity among mathematicians in fields other

than logic.

For purposes here, A ⊆ R2 is a polygon iff A is connected, is bounded by a closed

sequence of finitely many straight line segments, and A contains its boundary. For

this discussion, a polygon also contains its interior. A polygon A is said to be

convex iff for every x, y ∈ A, the line segment connecting x and y is contained

entirely within A. That is, A is convex iff for every x, y ∈ A and every λ ∈ R

with 0 ≤ λ ≤ 1, λx + (1 − λ)y ∈ A. Given a set of points P , the convex hull

of P is the intersection of all convex sets containing every point in P , and so is

the smallest polygon containing every point in P . A set of points is said to be in

general position iff no three points are collinear. E. Klein proposed and proved the

following proposition (as recorded in Erdős and Szekeres’ paper [48]).

Proposition 2.8.1. Given any five points in the plane in general position, some

four form a convex quadrilateral (that is, the convex hull of some four is a convex

quadrilateral).

Proof. Since there are three non-collinear points, the convex hull of any five points
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is a polygon with at least three sides. There are three cases, as shown in Figure 2.3.

If the convex hull is either a quadrilateral or a pentagon, there is nothing to prove.

Figure 2.3: Any five points in general position contain a convex quadrilateral

Otherwise, the convex hull is a triangle. Let A, B, C be the vertices of this triangle,

and let D and E be the two other points (contained in the interior of the triangle).

Then two vertices of the triangle, say A and B, are on the same side of the line DE,

and therefore there is a convex quadrilateral on the vertices A, B, D, and E.

According to [48], the following was suggested by Klein, and proved in the affirma-

tive by Erdős and Szekeres.

Theorem 2.8.2 (Erdős and Szekeres, 1935 [48]). For any m ∈ Z+, there exists a

least integer n = ES(m) such that for any n points in the plane in general position,

some m points form a convex m-gon.

Four proofs are presented here, the first of which is a direct proof, while the other

three use Ramsey’s theorem.
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First proof of Theorem 2.8.2 (Due to Erdős and Szekeres, 1935 [48]). For two

points in R2 P1 = (x1, y1) and P2 = (x2, y2) where x1 6= x2, let m(P1, P2) denote the

slope of the line through P1 and P2, i.e.,

m(P1, P2) =
y2 − y1

x2 − x1

.

Let C = {P1, . . . , Pk} be a set of points in R2, sorted by ascending x-coordinates

(without loss of generality, by tilting, it may be assumed that the x-coordinates of

the points in C are all distinct). If for each i ∈ [1, k − 2],

m(Pi, Pi+1) > m(Pi+1, Pi+2),

then C is said to be a k-cap. If for all i ∈ [1, k − 2],

m(Pi, Pi+1) < m(Pi+1, Pi+2),

then C is said to be a k-cup. Let f(i, k) denote the least n ∈ Z+ (if any exists)

such that given any n points in general position, some i of them form an i-cup, or

some k of them form a k-cap. If for some m ∈ Z+, f(m,m) exists, then since any

cup or cap can be made into a convex polygon by joining the first and last points,

it follows that ES(m) ≤ f(m,m).

Claim. For all i, j ∈ Z+, i, j ≥ 4, f(i, j) ≤ f(i− 1, j) + f(i, j − 1)− 1.

Proof of Claim. Let i, j ≥ 4, assume f(i− 1, j) and f(i, j − 1) exist, and let n =

f(i−1, j)+f(i, j−1)−1. Let p1, . . . , pn be any n points in R2, ordered by ascending
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x-coordinates. In an effort to prove the claim, a set of points {v1, . . . , vf(i,j−1)} ⊆

{p1, . . . , pn} is first constructed inductively.

If the points p1, . . . , pf(i−1,j) do not contain some j points that form a j-cap, then

there exists β1
1 ≤ . . . ≤ β1

i−1 ∈ [1, f(i−1, j)] such that pβ1
1
, . . . , pβ1

i−1
form an (i−1)-

cup. Let v1 = pβ1
i−1

.

Let k ∈ [1, f(i, j − 1) − 1], and assume that vk has already been defined. Assume

the set of points {p1, . . . , pf(i−1,j)+k} \ {v1, . . . , vk} does not contain some j points

that form a j-cap. Then since

|{p1, . . . , pf(i−1,j)+k} \ {v1, . . . , vk}| = f(i− 1, j),

there exists βk+1
1 ≤ . . . ≤ βk+1

i−1 such that pβk+1
1

, . . . , pβk+1
i−1

form an (i − 1)-cup. Let

vk+1 = pβk+1
i−1

.

Having defined the points {v1, . . . , vf(i,j−1)}, each an end point of some (i− 1)-cup,

assume that no i points in {v1, . . . , vf(i,j−1)} produce an i-cup. Then there exist

{r1, . . . , rj−1} ⊆ {v1, . . . , vf(i,j−1)} that form a (j − 1)-cap. Let {q1, . . . , qi−1} be an

(i− 1)-cup such that qi−1 = r1 (see Figure 2.4). If the slope from r1 to r2 is greater

than the slope from qi−2 to r1, then q1, . . . , qi−2, qi−1, r2 is an i-cup. Otherwise

qi−2, qi−1, r2, . . . , rj−1 is a j-cap. This proves the claim.

A simple inductive argument using the base case f(3,m) = f(m, 3) = m now
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Figure 2.4: The points q1, . . . , qi−1 and r1, . . . , rj−1

shows that for all i, j ∈ Z+, i, j ≥ 3, f(i, j) exists and is finite. Therefore, since

ES(m) ≤ f(m,m), ES(m) exists and is finite for all m ∈ Z+.

Second proof of Theorem 2.8.2 (Due to Erdős and Szekeres, 1935 [48]). Fix

m ∈ Z+, and let n = R4(5,m). Fix any n points in the plane in general posi-

tion, and let ∆ be a 2-colouring of the four element subsets of points defined by

∆({a, b, c, d}) = blue if {a, b, c, d} forms a convex quadrilateral, ∆({a, b, c, d}) = red

otherwise. Consider any five points among the n. Among these five points, by

Proposition 2.8.1, some four form a convex quadrilateral, and therefore some four

are coloured blue. Thus, there can be no set of five points with all 4-element subsets

coloured red. Then, by the choice of n, there are m points p1, . . . , pm, every four of

which form a convex quadrilateral.

In hopes of a contradiction, assume that p1, . . . , pm do not form a convex m-gon.

Then one point, call it p∗, would be contained in the interior of the convex hull of
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these m points, and therefore, within the interior of the convex hull of some three

points, call them q, r, and s. Then p∗, q, r, and s do not form a convex quadrilateral,

a contradiction.

A proof by Michael Tarsy was presented by M. Lewin in 1976 [90]. Lewin writes

that Tarsy, an undergraduate student at Technion Israel Institute of Technology in

Lewin’s combinatorics class, was asked to prove the Erdős-Szekeres n-gon theorem

on his exam. The class had been shown the above proof due to Erdős and Szekeres

(using R4(5, m)), but Tarsy was “fortunately” [65, p. 26] absent from class that

day.

Third proof of Theorem 2.8.2 (Due to Tarsy, see [90, p. 136]). Let m ≥ 2, let

n = R3(m; 2), and let V = {v1, . . . , vn} be a set of n points in the plane in general

position. For i < j < k ∈ [1, n], let (vi, vj, vk) denote the triangle with vertices

vi, vj, and vk. Call the triangle (vi, vj, vk) a counter clockwise (ccw) triangle if

vi, vj, and vk occur in counterclockwise orientation, and a clockwise (cw) triangle

otherwise. Define ∆ : [V ]3 → {red, blue} by colouring the triple {vi, vj, vk} red if

(vi, vj, vk) is a ccw triangle, and blue otherwise.

By Ramsey’s theorem, there exists M ∈ [V ]m such that each triangle in M has the

same orientation, say all triangles are ccw. Assume these m points do not form a

convex m-gon. Then for some a, b, c, d ∈ [1, n], vd lies inside the triangle (va, vb, vc).
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Without loss of generality, assume that a < b < c.

Figure 2.5: The ccw triangle (va, vb, vc) containing vd.

In order that the points va, vc, and vd form a ccw triangle, either (i) a < d < c,

or (ii) d < c < a or (iii) c < a < d. Neither (ii) nor (iii) can hold since a < c,

and therefore a < d < c. In the same way, in order that va, vb and vd form a ccw

triangle, either (iv) a < b < d, (v) b < d < a, or (vi) d < a < b. By (i), a < d,

and so neither (v) or (vi) hold. Therefore a < b < d. However, b < d implies that

a < b < d < c, implying that (vb, vd, vc) is a ccw triangle, which is not true.

Therefore the points in M form a convex m-gon.

Fourth proof of Theorem 2.8.2 (Due to Johnson [78]). Let m ∈ Z+, let n =

R3(m), and let V be a set of n points in the plane in general position. For any

a, b, c ∈ V , let N(a, b, c) denote the number of elements of V inside the triangle
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formed by vertices a, b, and c. Define ∆ : [V ]3 → {red, blue} by

∆({a, b, c}) =





red if N(a, b, c) is even,

blue if N(a, b, c) is odd.

Then by the choice of n, there exists an m-set M such that ∆ is constant on [M ]3.

If the points of M did not form a convex m-gon, there would exist a, b, c, d ∈ M

such that d is inside the triangle formed by a, b, c, in which case

N(a, b, c) = N(a, b, d) + N(a, c, d) + N(b, c, d) + 1. (2.5)

Since ∆ is constant on [M ]3, N(a, b, d), N(a, c, d), N(b, c, d), and N(a, b, c) are all

the same parity, an impossibility by equation (2.5).1

Corollary 2.8.3. For all m ∈ Z+, ES(m) ≤ min{R3(m), R4(m, 5)}.

2.9 The Paris-Harrington theorem

The following theorem of J. Paris and L. Harrington generalizes Ramsey’s theorem,

and is notable as a statement true in Peano arithmetic, but is not provable within

Peano arithmetic (see [65, p. 170] for details). Much of the proof given here

1The last three proofs show that Ramsey’s theorem implies the Erdős-Szekeres n-gon theorem.

It has been suggested that the Erdős-Szekeres n-gon theorem implies Ramsey’s theorem (at least

in the k = 2 case), though at present I have been unable to find a proof of this fact.
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duplicates the second proof of Ramsey’s theorem (see Section 2.5). Define a set S ⊆

Z+ to be large iff |S| ≥ min S. For example, {3, 6, 7, 10} is large, but {9, 15, 22, 34}

is not.

Theorem 2.9.1 (Paris and Harrington, 1977 [116]). Let k, r, s ∈ Z+. Then there

exists n ∈ Z+ such that for any ∆ : [1, n]k → [1, r], there exists a large S ⊆ [1, n]

with |S| ≥ s such that ∆ is constant on [S]k.

Proof. In hopes of a contradiction, assume for all finite n, there exists an r-

colouring ∆ : [1, n]k → [1, r] such that every large set of order at least s is not

monochromatic under ∆. Call such a colouring a bad colouring of [1, n]k.

Let ∆ : [Z+]k → [1, r]. By Ramsey’s theorem for infinite sets (Theorem 1.2.4),

there exists T ⊆ Z+ such that |T | = |Z+|, and ∆ is constant on [T ]k. Let n =

max{s, min T}, and let S be the first n elements of T . Then S is a large set,

monochromatic under ∆, and therefore there is no bad colouring of [Z+]k.

Let

V = {∆ : ∆ is a bad colouring of [1, n]k, n ∈ Z+ ∪ {0}}.

Note that if ∆ is a bad colouring of [1, n]k, then ∆|[1,n−1]k is also a bad colouring.

Note also that the empty colouring is a bad colouring.

Let E ⊆ [V ]2 be defined as follows: for i ≤ j, a bad colouring ∆i of [1, i]k, and a

bad colouring ∆j of [1, j]k, let {∆i, ∆j} ∈ E iff j = i + 1 and ∆j|[1,i]k = ∆i. Then
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(V, E) is an infinite locally finite tree, rooted at the empty colouring. By König’s

infinity lemma (Theorem 2.5.1), there exists an infinite path ∆0, ∆1, . . . starting at

the root. This infinite path corresponds to a bad colouring ∆∞ : [Z+]k → [1, r],

which extends each colouring ∆0, ∆1, . . ., but this was shown to be impossible.



Chapter 3

Traditional Ramsey numbers

Recall that (see Theorem 1.2.3) Rk(m; r) is the least integer n such that for every

n-set N , and for every r-colouring ∆ : [N ]k → [1, r], there exists M ∈ [N ]m such

that [M ]k is monochromatic under ∆. In Chapter 2, the off-diagonal generalization

Rk(a, b) was also defined, and both Rk(m; r) and Rk(a, b) were shown to exist. The

focus of this chapter is to survey results on bounding Rk(m; r) and Rk(a, b).

3.1 Exact Values

Before presenting some of the few known non-trivial values for the numbers Rk(m; r),

and Rk(a, b), some trivial cases are exhibited.

36
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3.1.1 Trivial cases

There are a number of trivial values and bounds that can be determined immediately

using the definition of the Ramsey numbers. The following two (trivial) values are

direct consequences of the pigeonhole principle.

Observation 3.1.1. For all m, r ∈ Z+, R1(m; r) = (m− 1)r + 1.

Observation 3.1.2. For all a, b ∈ Z+, R1(a, b) = a + b− 1.

The next two cases cover some vacuous cases. When k > m, Rk(m; r) is defined

as the least integer n so that for every n-set N , and every ∆ : [N ]k → [1, r], there

exists M ∈ [N ]m such that [M ]k (= ∅) is monochromatic under ∆. We say that,

vacuously, every M ∈ [N ]m is such that [M ]k is monochromatic under ∆, and

therefore Rk(m; r) = m. The following observations sum up these vacuous cases, in

both the diagonal and off-diagonal cases.

Observation 3.1.3. For k, m, r ∈ Z+, if k ≥ m, then Rk(m; r) = m

Observation 3.1.4. For a, b, k ∈ Z+, if k > min{a, b}, then Rk(a, b) = min{a, b},

and if k = min{a, b}, then Rk(a, b) = max{a, b}.

In order to avoid the above trivial situations, one may assume that from now on,

m > k.

Note that the off-diagonal Ramsey numbers are symmetric.
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Lemma 3.1.5. For all a, b, k ∈ Z+, Rk(a, b) = Rk(b, a).

Proof. Let a, b, k ∈ Z+. It suffices by symmetry to show that Rk(a, b) ≤ Rk(b, a).

Let n = Rk(b, a), let N be an n-set, and let ∆ : [N ]k → {red, blue}. Define

∆′ : [N ]k → {blue, red} by ∆′(X) = red if ∆(X) = blue, and ∆′(X) = blue

otherwise. By the definition of n, there is either a set M1 ∈ [N ]b monochromatic blue

under ∆′ (and therefore monochromatic red under ∆), or there is a set M2 ∈ [N ]a

monochromatic red under ∆′ (and therefore monochromatic blue under ∆).

All the following bounds are in the k = 2 case. Recall that R(a, b) = R2(a, b).

An independent set of vertices in a graph is a set of vertices containing no edge.

To show that R(a, b) > k, it suffices to exhibit a 2-colouring of the edges of Kk

containing no red Ka and no blue Kb, or, equivalently, to exhibit a Ka-free graph

G on k vertices such that there is no independent set with b vertices.

To show that R(a, b) ≤ `, it suffices to prove that for every 2-colouring of the

edges of K`, there is either a monochromatic red Ka or a monochromatic blue Kb,

or, equivalently, to prove that every Ka-free graph on ` vertices must contain an

independent set of order b.
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3.1.2 The party problem

The following problem is now folklore in graph Ramsey theory.

The Party Problem. Prove that at a party of six people, either there are three

mutual acquaintances or there are three mutual strangers.

The party problem was on the 13th William Lowell Putnam Mathematical Compe-

tition in 1953, and in The American Mathematical Monthly, in 1958 [50]. Assuming

that “knowing” people is a symmetric relation (where in real life it’s not), solving

the party problem is equivalent to the graph Ramsey theory problem of showing

that no matter how the edges of K6 are coloured with two colours (colouring an

edge red, say, if two people are acquaintances, and blue if they are strangers), one

colour class must contain a triangle, i.e., R(3, 3) ≤ 6. In fact, R(3, 3) = 6.

Theorem 3.1.6. R(3, 3) = 6.

Proof. To show that R(3, 3) > 5, let ∆ be the colouring of E(K5) shown in

Figure 3.1 (dashed lines represent edges coloured blue and solid lines represent

edges coloured red). Every triangle (copy of K3) in K5 under ∆ contains two edges

that are different colours. Therefore K5 6−→ (K3)
K2
2 , showing R(3, 3) > 5.

To show that R(3, 3) ≤ 6, let ∆ : E(K6) → {red, blue}. Let V (K6) = {v, a, b, c, x, y}.

By the pigeonhole principle, at least three of the five edges attached to v, say {v, a},

{v, b}, and {v, c}, are coloured the same. Without loss of generality, assume these
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Figure 3.1: A colouring of E(K5) containing no monochromatic triangle.

Figure 3.2: The party problem

three edges are all coloured red. If any one of {a, b}, {b, c}, or {a, c} is coloured

red, then a red triangle is formed. Otherwise, {a, b}, {b, c}, and {a, c} are all blue,

and together they form a blue triangle (see Figure 3.2). Therefore K6 −→ (K3)
K2
2 ,

showing that R(3, 3) ≤ 6.

3.1.3 R(3,4) = 9

Theorem 3.1.7 (Greenwood and Gleason, 1955 [67]). R(3, 4) = 9.

Proof. To see why R(3, 4) > 8, consider the following graph G and its complement:
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By inspection one can verify that there are no triangles in G and that there are no

K4’s in G. Hence R(3, 4) > 8.

To see why R(3, 4) ≤ 9, let ∆ : E(K9) → {red, blue}. For any x ∈ V (K9), let

Ax be the set of vertices connected to x by red edges, and let Bx be those vertices

connected to x by blue edges.

If for any x ∈ V (K9), |Bx| ≥ 6, then since R(3, 3) = 6, Bx must contain either a red

triangle (in which case the theorem is proved), or a blue triangle, which together

with x forms a blue K4 (and the theorem is again proved). Therefore assume that

for every x ∈ V (K9), |Bx| ≤ 5.

If for any x ∈ V (K9), |Ax| ≥ 4, then since R(2, 4) = 4 (a trivial case covered by

Observation 3.1.4), Ax either contains a red edge, which together with x forms a

red triangle (and the theorem is proved), or contains a blue K4 (and the theorem

is again proved). Therefore assume that for every x ∈ V (K9), |Ax| ≤ 3.
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Since for every x ∈ V (K9), |Bx| ≤ 5, and |Ax| ≤ 3, and |Ax| + |Bx| = 8, it follows

that |Ax| = 3 and |Bx| = 5. Let G be the subgraph of K9 on the red edges. Then

G is 3-regular, and by the handshaking lemma (Lemma A.0.4),

2|E(G)| =
∑

v∈V (G)

deg(v) = 3|V (G)| = 27,

which is impossible, since |E(G)| is an integer. Therefore it cannot happen that

every vertex of K9 is on exactly three red edges and five blue edges. This proves

the theorem.

3.1.4 R(4,4) = 18

Theorem 3.1.8 (Greenwood and Gleason, 1955 [67]). R(4, 4) = 18.

Proof. By the Erdős-Szekeres recursion (Theorem 2.7.1),

R(4, 4) ≤ R(3, 4) + R(4, 3) = 9 + 9 = 18.

To show that R(4, 4) > 17, first recall that for a prime p, an integer x ∈ [1, p− 1],

x 6= 0, is a quadratic residue (mod p) if and only if there exists y such that y2 = x

(mod p). Let G be the graph with vertices {0, 1, . . . , 16}, and edge set {{i, j} :

i − j is a quadratic residue (mod 17)} (see Figure 3.3). Note that the quadratic

residues modulo 17 are {1, 2, 4, 8, 9, 13, 15, 16}.
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Figure 3.3: A graph G showing R(4, 4) > 17.

Claim. The graph G contains no K4.

Proof. Let e = {i, j}, i < j, be any (fixed) edge in G. Note that the function

ψ : x 7→ x− i is an isomorphism between G and itself (since {a, b} ∈ E(G) iff a− b

is a quadratic residue (mod 17) iff (a− i)− (b− i) is a quadratic residue (mod 17)

iff {a − i, b − i} ∈ E(G)). Therefore, it can be assumed that i = 0. Similarly, for

any two quadratic residues x1 and x2,
x1

x2
is also a quadratic residue, and therefore

it can also be assumed that j = 1.

Consider two triangles in G sharing the edge {0, 1}, say 0, 1, k and 0, 1, j. Then k

and k − 1 are both quadratic residues mod 17, and thus k ∈ {2, 9, 16}. Similarly,
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j ∈ {2, 9, 16}. Since none of {2, 9}, {9, 16}, or {2, 16} are edges in G, these two

triangles cannot be contained in some K4. Therefore G cannot contain any K4’s.

To see that G doesn’t contain any K4’s either, notice that G is isomorphic to G, as

exhibited by1 the isomorphism f : x 7→ 3x (mod 17).

The graph G used above is an example of a “Paley graph” (see, e.g., [8]). For any

prime power q, q ≡ 1 (mod 4), the Paley graph of order q, denoted Pq, is the graph

with vertex set [0, q − 1] and {x, y} ∈ E(Pq) iff x − y is a quadratic residue (mod

q). The requirement that q ≡ 1 (mod 4) ensures that −1 is a square, making i− j

a quadratic residue iff j − i is a quadratic residue, and thus the resulting graph is

undirected. The properties of Paley graphs used above are that Paley graphs are

edge-transitive, that is, for any two edges e1 = {x1, y1}, e2 = {x2, y2} ∈ E(Pq), there

exists an automorphism φe1,e2 of Pq such that φ(x1) = x2 and φ(y1) = y2, and that

Paley graphs are self-complimentary, that is, Pq
∼= Pq.

1thanks to K. Johannson for showing me this
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3.1.5 Summary of known exact values

b 3 4 5 6 7 8 9

a

3 6 9 14 18 23 28 36

4 18 25

Table 3.1: Known exact Ramsey numbers R(a, b).

The values in Table 3.1 are the only exact non-trivial values known for the traditional

Ramsey numbers R(a, b). A number of bounds are known for the other values

R(a, b), e.g., some of the best-known bounds on the small diagonal numbers R(a, a)

include the following:

43 ≤ R(5, 5) ≤ 49 102 ≤ R(6, 6) ≤ 165

205 ≤ R(7, 7) ≤ 540 282 ≤ R(8, 8) ≤ 1870

565 ≤ R(9, 9) ≤ 6588 798 ≤ R(10, 10) ≤ 23556

For references and known bounds, see the dynamic survey by Radziszowski [123].

The arrow notation, and the Ramsey numbers Rk(a, b) have a natural generalization

to r colours. For k, r,m1, . . . , mr ∈ Z+, write n −→ (m1, . . . , mr)
k
r if for any n-set

N , and for any ∆ : [N ]k → [1, r], there exists i ∈ [1, r], and Mi ∈ [N ]mi such that

[Mi]
k is monochromatic in the i-th colour. Let Rk(m1, . . . , mr) be the least integer



3.2. Erdős-Szekeres upper bound 46

n such that

n → (m1, . . . , mr)
k
r .

The values Rk(m1, . . . , mr) do exist since

Rk(m1, . . . , mr) ≤ Rk(max{m1, . . . , mr}; r),

but other than trivial values similar to those in Observations 3.1.1 through 3.1.4,

the only value known is R2(3, 3, 3) = R2(3; 3) = 17 (due to Greenwood and Glea-

son [67]).

3.2 Erdős-Szekeres upper bound

The Erdős-Szekeres recursion given in Theorem 2.7.2 produces an upper bound on

the Ramsey numbers by induction.

Theorem 3.2.1 (Erdős and Szekeres, 1935 [48]). For all k, ` ≥ 2, R(k, `) ≤ (
k+`−2
k−1

)
.

Proof. The proof of Theorem 3.2.1 is by induction on k+`. For any n ∈ Z+, n ≥ 4,

let S(n) be the statement that for all k, ` ≥ 2 such that k+` = n, R(k, `) ≤ (
k+`−2
k−1

)
.

Base Case: When k = ` = 2, the theorem says that R(2, 2) ≤ (
2+2−2
2−1

)
=

(
2
1

)
= 2,

which is true. Therefore S(4) holds.

Inductive Step: Let m ≥ 4 and assume that S(m) holds. Let k, ` ≥ 2 be such that
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k + ` = m + 1. It remains to show that R(k, `) ≤ (
k+`−2
k−1

)
.

When k = 2, the theorem says that R(2, `) ≤ (
2+`−2
2−1

)
=

(
`
1

)
= ` which is true.

Therefore the theorem holds whenever k = 2 (and, by symmetry, whenever ` = 2).

If k, ` ≥ 3, then

R(k, `) ≤ R(k − 1, `) + R(k, `− 1) (by the Erdős-Szekeres recursion),

≤
(

k + `− 3

k − 2

)
+

(
k + `− 3

k − 1

)
(since S(m) holds),

=

(
k + `− 2

k − 1

)
(by Pascal’s Equality).

Therefore S(m + 1) holds.

By induction, for all n ≥ 4, S(n) holds, proving the theorem.

In order to compute a closed upper bound on the Ramsey numbers, Stirling’s for-

mula is used. The approximation for n! given by Stirling (see e.g., [143, p. 384]) is

for any n ∈ Z+,

√
2πn

(n

e

)n

e
1

12n+1 < n! <
√

2πn
(n

e

)n

e
1

12n .

Corollary 3.2.2. For all k ≥ 2,

R(k, k) ≤ 1

4
√

k
22k.

Proof. Let k ≥ 2. Then,

R(k, k) ≤
(

2k − 2

k − 1

)
(by Theorem 3.2.1)
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=
(2k − 2)!

(k − 1)!(k − 1)!

<
√

2π(2k − 2)

(
2k − 2

e

)2k−2

e
1

12(2k−2)

(
e

k − 1

)2(k−1)
1

2π(k − 1)
e

2
12(k−1)+1

=

(
2k − 2

k − 1

)2k−2 (
1√
2π

)(√
2k − 2

k − 1

)
e

1
12(2k−2) e

2
12(k−1)+1

= 22k−2

(
1√
π

)(√
k − 1

k − 1

)
e

1
12(2k−2) e

2
12(k−1)+1

= 22k

(
1

4
√

π

)(
1√

k − 1

)
e

1
12(2k−2) e

2
12(k−1)+1

= 22k

(
1

4
√

π

)(
1√
k

)(√
k

k − 1

)
e

1
12(2k−2) e

2
12(k−1)+1

< 22k

(
1

4
√

k

)

Corollary 3.2.2 has been improved a number of times. In 1986, Rödl presented (but

apparently didn’t publish—see, e.g., [139, p. 509] and [102, p. 1348]) the result

that there exists a constant c such that

R(k, `) ≤
(

k+`−2
k−1

)

(log(k + `− 2))c
.

Thomason [139] later published that for some constant c, for all k ≥ ` ≥ 1

R(k + 1, ` + 1) ≤ e−(`/2k) log k+c
√

log k

(
k + `

k

)
.

I have not worked out the details of how much better Thomason’s bound is than

Corollary 3.2.2, but according to Math Reviews MR968746 (90c:05152) it is often

an improvement.
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3.3 Constructive lower bounds

The following is perhaps one of the earliest known constructive bounds on the

Ramsey numbers (see, e.g., [4]). It could be considered a “folklore” bound.

Theorem 3.3.1. R(k, `) > (k − 1)(`− 1).

Proof. The graph G = (`−1)Kk−1 contains no Kk, and the complement G contains

no K`.

Recall that given a matrix M , the rank of M , denoted rank(M), is the dimension

of the row space of M . Also recall that for any matrices A and B such that AB

exists, rank(A) ≥ rank(AB) (see, e.g., [56, p. 159]).

Theorem 3.3.2 (Nagy, 1972 [101]). For all t ≥ 3,

R(t + 1, t + 1) >

(
t

3

)
.

Proof. Let t ≥ 3, n =
(

t
3

)
. Let Kn be the complete graph with V (Kn) = [1, t]3.

For X, Y ∈ [1, t]3, colour the edge {X,Y } red if |X ∩ Y | = 1, and blue otherwise.

Let d be the largest number of vertices in a red clique in Kn, and let A1, . . . , Ad

be the vertices of this red clique. Let v1, . . . ,vd be 0-1 incidence (or characteristic)

vectors for A1, . . . , Ad respectively (that is, each vi = (vi,1, . . . , vi,n) is such that

vi,j = 1 if j ∈ Ai, and 0 otherwise). Then since each characteristic vector contains
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exactly three ones, for all i ∈ [1, d], vi • vi = 3. As well, for all i, j ∈ [1, d], i 6= j,

since each pair of sets Ai, Aj intersects at exactly one point, vi•vj = 1. Let Md×t be

the matrix with the vi’s as rows (in order). Then (MMT )d×d is the square matrix

with 3’s down the diagonal and 1’s everywhere else. Since MMT is invertible,

d = rank(MMT ) ≤ rank(M) ≤ min{d, t} ≤ t.

Therefore d, the largest number of vertices in a red clique in Kn, is at most t, and

so there is no red Kt+1 in Kn.

Let c be the largest number of vertices in a blue clique in Kn, and let B1, . . . , Bc

be the vertices of such a clique. Let u1, . . . ,uc be 0-1 incidence (or characteristic)

vectors for B1, . . . , Bc respectively. Then for all i, j ∈ [1, c], i 6= j, ui • ui = 3, and

ui •uj is 0 or 2. Let Nc×t be the matrix with these vectors as rows. Then (NNT )c×c

mod 2 is the c× c identity matrix. By arguments similar to those above,

c = rank(NNT mod 2) ≤ rank(NNT ) ≤ rank(N) ≤ min{c, t} ≤ t.

Then, since c is the largest number of vertices in a blue clique in Kn, there is no

blue Kt+1. So since under the defined colouring of Kn there is no red Kt+1 and no

blue Kt+1, it follows that R(t + 1, t + 1) > n =
(

t
3

)
.

Other explicit constructions have been found, including the following by Frankl and

Wilson (proof is omitted):
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Theorem 3.3.3 (Frankl and Wilson, 1981 [55]). Let p be a prime. Let n =
(

p3

p2−1

)
,

and let Kn be the complete graph with vertex set [1, p3]p
2−1. Given two sets X, Y ∈

[1, p3]p
2−1, colour {X,Y } red if |X ∩Y | ≡ −1 mod p, and blue otherwise. Then for

t =
(

p3

p−1

)
, Kn contains no monochromatic copy of Kt, and thus R(t + 1, t + 1) > n.

I have not determined how much of an improvement Frankl and Wilson’s construc-

tion is over Nagy’s. For further known constructive results, see [4] or [123, p. 8].

3.4 Probabilistic lower bounds

3.4.1 The Erdős lower bound

The following are a few basic definitions in probability theory. For a more complete

reference, see [8]. For present purposes, a probability space is a pair (Ω, P ) where Ω is

a finite set and P : Ω → {x ∈ R : 0 ≤ x ≤ 1} is a function such that
∑

v∈Ω P (v) = 1.

If for each v ∈ Ω, P (v) = 1
|Ω| , then the probability space is uniform. An event is a

subset of Ω, and define the probability of an event A as

P (A) =
∑
v∈A

P (v).

Note that then P (Ω) = 1.

It is likely that the most widely cited bound on the Ramsey numbers is the following
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theorem due to Erdős, which is also commonly used as a first example illustrating

the power of the “probabilistic method”.

Theorem 3.4.1 (Erdős, 1947 [34]). For n, k ∈ Z+, if
(

n
k

)
21−(k

2) < 1 then

R(k, k) ≥ n + 1.

Proof. Let n, k ∈ Z+ be such that
(

n
k

)
21−(k

2) < 1. Let Ω be the set of all graphs

on [1, n], and let (Ω, P ) be the uniform probability space on Ω (that is, for every

G ∈ Ω, P (G) = 2−(n
2)). For any V ∈ [1, n]k, let AV be the event that either V is

a clique, or that V is an independent set. For each such V , the number of graphs

that have V as a clique (which is 1
2
|AV |) is 2(n

2)−(k
2). Therefore |AV | = 2 · 2(n

2)−(k
2),

and so for any V ∈ [1, n]k,

P (AV ) =
∑

G∈AV

P (G) =
∑

G∈AV

2−(n
2) = 2 ·

(
2(n

2)−(k
2)

)
2−(n

2) = 21−(k
2).

Since there are
(

n
k

)
choices for V , the probability that at least one V ∈ [1, n]k is

such that AV occurs is

P


 ⋃

V ∈[1,n]k

AV


 ≤

∑

V ∈[1,n]k

P (AV ) =
∑

V ∈[1,n]k

21−(k
2) =

(
n

k

)
21−(k

2) < 1.

Thus, there is a positive probability that no event AV occurs, and therefore there

exists a graph on n vertices with no k-clique, and no independent set of k vertices.

In other words, R(k, k) ≥ n + 1.
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Corollary 3.4.2 (Erdős, 1947 [34]). There exists a constant c such that for k ≥ 3,

R(k, k) >
c

e
√

2
k2k/2.

Proof. Let k ≥ 3, and let

n =

⌊
1

e
√

2
k2k/2

(
πk

2

) 1
2k

e
1

k(12k+1)

⌋
.

Then,

(
n

k

)
21−(k

2) =
n(n− 1) · · · (n− k + 1)

k!
21−(k

2)

<
nk

k!
21−(k

2)

< nk 1√
2πk

( e

k

)k

e−
1

12k+1 21−(k
2) (by Stirling’s formula)

≤
(

1

ek 2k/2
kk 2k2/2

(
πk

2

) 1
2

e
1

12k+1

)
1√
2πk

( e

k

)k

e−
1

12k+1 21−(k
2)

=

(
2k2/2

2k/2

) (
πk

2

) 1
2 1√

2πk
21−k2/2+k/2

= 1

Therefore by Theorem 3.4.1,

R(k, k) ≥ n + 1 >
1

e
√

2
k2

k
2

(
πk

2

) 1
2k

e
1

k(12k+1) >
c

e
√

2
k2

k
2 .

3.4.2 The Lovász local lemma

The so-called Lovász local lemma (or simply local lemma, or LLL) was first presented

and used in a 1975 paper by Erdős and Lovász [44] on extremal problems related to
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the class of k-chromatic r-uniform hypergraphs. The Lovász local lemma was used

to produce a bound on the Ramsey numbers in the same year by Spencer [132].

The bound produced by the local lemma is only a constant factor better than the

bound given in Corollary 3.4.2.

A few more definitions are needed first. A random variable in a probability space

(Ω, P ) is a function X : Ω → R. If X : Ω → {0, 1}, then X is a Bernoulli random

variable. The expected value of a random variable X is defined as

E(X) =
∑
G∈Ω

X(G)P (G).

Expectation is linear in the sense that for any two random variables X and Y , and

any a ∈ R, E(aX + Y ) = aE(X) + E(Y ).

Given two events A and B in a probability space (Ω, P ), the conditional probability

of A given B, denoted P (A | B) is defined as

P (A | B) =
P (A ∩B)

P (B)
.

Bayes’ theorem states that for any events A,B, and C,

P (A | B ∩ C) =
P (A ∩B | C)

P (B | C)
,

and is used repeatedly in what follows.

Two events A and B in some probability space (Ω, P ) are said to be independent

iff P (A ∩ B) = P (A) · P (B). For any k ∈ Z+, and events B1, . . . , Bk, an event A
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is mutually independent of the set {B1, . . . , Bk} iff A is independent of any boolean

combination of the Bi’s; in this case, the property used is that for any I ⊆ [1, k],

P

(
A ∩

⋂
i∈I

Bi

)
= P (A) · P

(⋂
i∈I

Bi

)
.

Let A1, . . . , An be events in some probability space (Ω, P ), and let G = (V, E)

be a graph with V (G) = [1, n]. The graph G is said to be a dependency graph

for the events A1, . . . , An if for each i ∈ [1, n], Ai is mutually independent of the

set of events {Aj : {i, j} 6∈ E(G)}. By the definition of a dependency graph, its

vertices must be integers, however the elements of the vertex set are not important

in applications. Therefore, when convenient, a “dependency graph” can refer to

any graph isomorphic to a dependency graph with integer vertices. Recall that in

a graph with vertex i, N(i) is the neighbourhood of i.

Theorem 3.4.3 (Lovász local lemma, Erdős and Lovász, 1975 [44]). Let (Ω, P ) be

a finite probability space, and let A1, . . . , An be events in this space. Let G be a

dependency graph for A1, . . . , An (with V (G) = [1, n]). If there exist x1, . . . , xn ∈ R

such that for all i ∈ [1, n], 0 ≤ xi < 1, and

P (Ai) ≤ xi

∏

j∈N(i)

(1− xj),

then

P

(
n⋂

i=1

Ai

)
≥

n∏
i=1

(1− xi) > 0.
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Proof. Assume there exist x1, . . . , xn ∈ R such that for all i ∈ [1, n], 0 ≤ xi < 1,

and

P (Ai) ≤ xi

∏

j∈N(i)

(1− xj).

In proving Theorem 3.4.3, the following claim is central.

Claim. For all S ( [1, n], and for all i 6∈ S,

P

(
Ai

∣∣∣
⋂
j∈S

Aj

)
≤ xi.

The proof of this claim is by strong induction on |S|. For any fixed k ∈ [0, n−1], let

T (k) be the statement that for all S ∈ [1, n]k, and for all i 6∈ S, P
(
Ai

∣∣∣ ⋂
j∈S Aj

)
≤

xi. To prove the claim, it suffices to show that T (0), T (1), . . . , T (n− 1) hold.

Base Case: For k = 0, S = ∅, and for any i ∈ [1, n],

P

(
Ai

∣∣∣
⋂
j∈S

Aj

)
= P (Ai) ≤ xi

∏

j∈N(i)

(1− xj) ≤ xi,

and therefore T (0) holds.

Inductive Step: Let k ∈ [0, n − 2], and assume T (0), . . . , T (k) all hold. Let S ∈

[1, n]k+1, and let i 6∈ S. Let S1 = N(i) ∩ S, S2 = S \ S1. Then

P

(
Ai

∣∣∣
⋂
j∈S

Aj

)
= P

(
Ai

∣∣∣
⋂

j∈S1

Aj ∩
⋂

j∈S2

Aj

)

=
P

(
Ai ∩

(⋂
j∈S1

Aj

) ∣∣ ⋂
j∈S2

Aj

)

P
(⋂

j∈S1
Aj

∣∣ ⋂
j∈S2

Aj

) (by Bayes’ theorem)
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≤
P

(
Ai

∣∣ ⋂
j∈S2

Aj

)

P
(⋂

j∈S1
Aj

∣∣ ⋂
j∈S2

Aj

)

=
P (Ai)

P
(⋂

j∈S1
Aj

∣∣ ⋂
j∈S2

Aj

)

≤ xi

∏
j∈N(i)(1− xj)

P
(⋂

j∈S1
Aj

∣∣ ⋂
j∈S2

Aj

)

If S1 = ∅, then the denominator is 1, and since xi

∏
j∈N(i)(1− xj) ≤ xi, T (k) would

hold, so assume S1 6= ∅. Without loss of generality, assume that (for some r ≥ 1)

S1 = [1, r], and S2 = [r + 1, k + 1]. Then the denominator is

P

( ⋂
j∈S1

Aj

∣∣∣
⋂

j∈S2

Aj

)
= P

(
r⋂

i=1

Ai

∣∣∣
k+1⋂

i=r+1

Ai

)

= P

(
A1

∣∣∣
k+1⋂
i=2

Ai

)
P

(
r⋂

i=2

Ai

∣∣∣
k+1⋂

i=r+1

Ai

)

= P

(
A1

∣∣∣
k+1⋂
i=2

Ai

)
P

(
A2

∣∣∣
k+1⋂
i=3

Ai

)
P

(
r⋂

i=3

Ai

∣∣∣
k+1⋂

i=r+1

Ai

)

...

=
r∏

j=1

P

(
Aj

∣∣∣
k+1⋂

i=j+1

Ai

)

=
r∏

j=1

[
1− P

(
Aj

∣∣∣
k+1⋂

i=j+1

Ai

)]

≥
r∏

j=1

(1− xj)
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=
∏
j∈S1

(1− xj)

=
∏

j∈N(i)∩S

(1− xj)

≥
∏

j∈N(i)

(1− xj).

Therefore,

P

(
Ai

∣∣∣
⋂
j∈S

Aj

)
≤ xi

∏
j∈N(i)(1− xj)

P (
⋂

j∈S1
Aj

∣∣ ⋂
j∈S2

Aj)
≤ xi

∏
j∈N(i)(1− xj)∏

j∈N(i)(1− xj)
= xi,

and so T (k + 1) holds. Therefore, by mathematical induction, T (0), . . . , T (n − 1)

all hold, and so the claim holds.

To finish proving the theorem, all that is needed are the two laws:

P (A ∩B) = P (A) · P (B | A) (3.1)

P (A ∩B | C) = P (A | C) · P (B | A ∩ C). (3.2)

Then

P

(
n⋂

i=1

Ai

)
= P

(
A1

) · P
(

n⋂
i=2

Ai

∣∣∣ A1

)
(by equation (3.1))

= P
(
A1

) · P (
A2 | A1

) · P
(

n⋂
i=3

Ai

∣∣∣ A2 ∩ A1

)
(by equation (3.2))

...

=
n∏

i=1

P

(
Ai

∣∣∣
i−1⋂
j=1

Aj

)

=
n∏

i=1

[
1− P

(
Ai

∣∣∣
i−1⋂
j=1

Aj

)]
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≥
n∏

i=1

(1− xi) (by the claim with S = [1, i− 1]).

Corollary 3.4.4 (Lovász local lemma, Symmetric version [132]). Let A1, . . . , An

be events in the probability space (Ω, P ), and assume that there exists p such that

0 ≤ p ≤ 1 and for all i ∈ [1, n], P (Ai) ≤ p. Let G be a dependency graph for

A1, . . . , An, and let d ∈ Z+ be such that the maximum degree of G is at most d.

Then if ep(d + 1) ≤ 1, then P
(⋂n

i=1 Ai

)
> 0.

Proof. For all i ∈ [1, n], let xi = 1
d+1

, and assume that ep(d + 1) ≤ 1. Then

xi

∏

j∈N(i)

(1− xj) =
1

d + 1

(
1− 1

d + 1

)deg(i)

≥ 1

d + 1

(
1− 1

d + 1

)d

=
1

d + 1

(
d

d + 1

)d

=
1

d + 1

(
d + 1

d

)−d

=
1

d + 1

(
1 +

1

d

)−d

>
1

d + 1
(e1/d)−d (since if x > 0, ex > 1 + x)

=
1

d + 1

1

e

≥ p (since ep(d + 1) ≤ 1)

≥ P (Ai).

Therefore LLL applies, and thus, P
(⋂n

i=1 Ai

)
> 0.
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Note: the requirement of Corollary 3.4.4 for ep(d + 1) ≤ 1 has been on occasion

weakened to 4pd ≤ 1 (see, e.g., [134, p. 57]).

3.4.3 Lower bound on R(k, k) using the Lovász local lemma

Theorem 3.4.5. For any n, k ≥ 2, if

e
(
21−(k

2)
) ((

k

2

)(
n

k − 2

))
≤ 1,

then R(k, k) ≥ n + 1.

Proof. Let n, k ≥ 2, and let ∆ be a random 2-colouring of the edges of Kn where

the probability that a given edge is red is 1
2

(that is, Ω is the set of all edge 2-

colourings of Kn, the probability space (Ω, P ) is the uniform probability space on

Ω, and ∆ is an element of Ω). For each set S of k vertices in Kn, let AS be the event

that
(

S
K2

)
is monochromatic under ∆ (that is, AS is the set of edge 2-colourings that

make
(

S
K2

)
monochromatic). Then

P (AS) = 2 ·
(

1

2

)(k
2)

= 21−(k
2).

If S and T are two sets of k vertices and |S ∩ T | ≥ 2, then AS and AT are not

independent. Let G be a dependency graph for the AS’s. Then each vertex in G is

connected to at most

(
k

2

)(
n− 2

k − 2

)
− 1 <

(
k

2

)(
n

k − 2

)
− 1
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other vertices. Therefore the maximum degree of G is at most
(

k
2

)(
n

k−2

)− 1.

Thus by the symmetric Lovász local lemma (Corollary 3.4.4), if

e
(
21−(k

2)
) ((

k

2

)(
n

k − 2

))
≤ 1,

then P
(⋂

S AS

)
> 0, in which case there exists a colouring of the edges of Kn

containing no monochromatic k-set, i.e., R(k, k) ≥ n + 1.

If two real-valued functions on the integers f and g satisfy

lim
x→∞

f(x)

g(x)
= 0,

then write f(x) = o(g(x)), and say that f is little-oh of g. A function that is o(1)

is then a function that approaches 0. For convenience, the term o(1) is used to

represent an arbitrary function that is o(1). This is a type of “Landau notation”.

Corollary 3.4.6. For all k ∈ Z+,

R(k, k) >

√
2

e
k2k/2(1 + o(1)).

Proof. Let k ∈ Z+, and assume

e
(
21−(k

2)
) ((

k

2

)(
n

k − 2

))
≤ 1.

Then solving for
(

n
k−2

)
,

(
n

k − 2

)
≤ 2(k

2)

2e
(

k
2

) .
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Therefore since
(

n
k−2

) ≤ (
ne

k−2

)k−2
, it suffices to find n such that

(
ne

k − 2

)k−2

≤ 2(k
2)

ek(k − 1)

Then by solving for n and simplifying,

(
ne

k − 2

)k−2

≤ 2(k
2)

ek(k − 1)

⇐⇒ n ≤ 2
k(k−1)
2(k−2)

(ek(k − 1))
1

k−2

k − 2

e

⇐⇒ n ≤ k2k/2

(
2

k
2(k−2) (1− 2

k
)

e(ek(k − 1))
1

k−2

)

⇐⇒ n ≤
√

2

e
k2k/2

(
2

1
k−2 (1− 2

k
)

(ek(k − 1))
1

k−2

)

=⇒ n ≤
√

2

e
k2k/2 (1 + o(1)) (since lim

k→∞
2

1
k−2 (1− 2

k
)

(ek(k − 1))
1

k−2

= 1).

Putting the upper and lower bounds together, there exists some constants c1, c2

such that the Ramsey numbers are bounded by

c1k 2
k
2 ≤ R(k, k) ≤ c2√

k
22k. (3.3)

3.4.4 Bounding R(3, t)

By probabilistic methods, Erdős [36] gave a lower bound for R(3, t) of the form

c t2

(log t)2
. Spencer used the local lemma to get the same result with a simpler proof.
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Lemma 3.4.7 (Spencer, 1977 [133]). If n, t ∈ Z+, p ∈ (0, 1), and x, y ∈ [0, 1) are

such that

p3 ≤ x(1− x)3n(1− y)(
n
t), and (3.4)

(1− p)(
t
2) ≤ y(1− x)

t2n
2 (1− y)(

n
t) (3.5)

hold, then R(3, t) ≥ n.

Proof. Let n, t, p, x, y be as above. Let (Ω, P ) be the probability space of all edge

2-colourings of Kn, where for any ∆ : E(Kn) → {red, blue}, if r = |∆−1(red)|, then

P (∆) = pr(1− p)(
n
2)−r.

That is, each edge of Kn is independently coloured red with probability p. Let

X = [V (Kn)]3, Y = [V (Kn)]t. For each S ∈ X , let AS be the event that all the

edges in S are coloured red, and for each T ∈ Y , let BT be the event that all the

edges in T are coloured blue. Note that for any S ∈ X , T ∈ Y , P (AS) = p3, and

P (BT ) = (1− p)(
t
2).

Let G be the graph with V (G) = X ∪Y such that for any Z1, Z2 ∈ V (G), {Z1, Z2} ∈

E(G) if and only if |Z1 ∩ Z2| ≥ 2. Then G is a dependency graph for the events

{AS : S ∈ X} ∪ {BT : T ∈ Y}.

Let α = |X |, β = |Y|, and enumerate {AS : S ∈ X} = {A1, . . . , Aα} and {BT :

T ∈ Y} = {B1, . . . , Bβ}. By the Lovász local lemma (Theorem 3.4.3), if there exist
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x1, . . . , xα, y1, . . . , yβ ∈ [0, 1) such that for all i ∈ [1, α],

P (Ai) ≤ xi

∏

Aj∈NG(Ai)∩X
(1− xj)

∏

Bj∈NG(Ai)∩Y
(1− yj),

and for all i ∈ [1, β],

P (Bi) ≤ yi

∏

Aj∈NG(Bi)∩X
(1− xj)

∏

Bj∈NG(Bi)∩Y
(1− yj),

then

P

(
α⋂

i=1

Ai ∩
β⋂

j=1

Bj

)
> 0,

implying that there exists a colouring ∆ ∈ Ω exhibiting no monochromatic red K3

and no monochromatic blue Kt, and therefore R(3, t) > n.

Note that for every Ai ∈ X and every Bj ∈ Y ,

|NG(Ai) ∩ X | = 3(n− 3) < 3n, (3.6)

|NG(Bj) ∩ X | =

(
t

2

)
(n− t) +

(
t

3

)
<

(
t

2

)
n <

t2n

2
, (3.7)

|NG(Ai) ∩ Y| ≤ |Y| =
(

n

t

)
, (3.8)

|NG(Bj) ∩ Y| ≤ |Y| =
(

n

t

)
. (3.9)

Define x1 = x, x2 = x, . . . , xα = x, and define y1 = y, y2 = y, . . . , yβ = y (where

x and y were defined in the statement of the theorem). Then, for any i ∈ [1, α],

P (Ai) = p3,

≤ x(1− x)3n(1− y)(
n
t), (by (3.4))
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< x(1− x)|NG(Ai)∩X|(1− y)|NG(Ai)∩Y|, (by (3.6) and (3.8))

= xi

∏

Aj∈NG(Ai)∩X
(1− xj)

∏

Bj∈NG(Ai)∩Y
(1− yj).

Similarly, for any i ∈ [1, β],

P (Bi) = (1− p)(
t
2),

≤ y(1− x)
t2n
2 (1− y)(

n
t), (by (3.5))

< y(1− x)|NG(Bi)∩X|(1− y)|NG(Bi)∩Y|, (by (3.7) and (3.9))

= yi

∏

Aj∈NG(Bi)∩X
(1− xj)

∏

Bj∈NG(Bi)∩Y
(1− yj).

Therefore, the xi’s and the yi’s work, and so by the Lovász local lemma,

P

(
α⋂

i=1

Ai ∩
β⋂

j=1

Bj

)
> 0.

Corollary 3.4.8. There exists a constant c such that for any t ≥ 3,

R(3, t) > c
t2

(log t)2
.

To actually show that R(3, t) > c t2

(log t)2
, it suffices to show that for any t ∈ Z+ and

for n = c t2

(log t)2
, there exist p ∈ (0, 1) and x, y ∈ [0, 1) such that the inequalities

(3.4) and (3.5) hold. Spencer says that “elementary analysis (and a free weekend!)”

[134, p. 63] can be used to show that n = c t2

(log t)2
works, and is optimal. I have

personally not worked through these details (see [8, pp. 286–289] for the details).
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Using the same argument as in the proof of Lemma 3.4.7, Spencer also proved the

following generalization.

Theorem 3.4.9 (Spencer, 1977 [133]). For any m ∈ Z+, there exists a constant

c = c(m) such that for all t ≥ m,

R(m, t) > c

(
t

log t

)((m
2 )−1)/(m−2)

.

A notable consequence of Theorem 3.4.9 is the bound R(4, t) > c
(

t
log t

)5/2

, which,

according to Alon and Spencer [3, p. 68], is still the best known lower bound for

general R(4, t).

In terms of upper bounds, in 1968 Graver and Yackel [66] showed that R(3, t) ≤

c log log t t2

log t
. Graver and Yackel’s bound was later improved by Ajtai, Komlós, and

Szemerédi in 1980 [2], who proved that R(3, t) ≤ c t2

log t
.

Spencer’s bound for R(3, t) was improved by Kim in 1995 [82] to show that R(3, t) ≥

c t2

log t
. The result of Ajtai et al., together with Kim’s result, shows that there are

constants c1 and c2 such that

c1
t2

log t
≤ R(3, t) ≤ c2

t2

log t
.

In other words, the proper order of magnitude was the bound by Ajtai, Komlós,

and Szemerédi.
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3.5 Bounds for Rk(m; 2) when k > 2

When colouring general k-tuples, not much is known other than the following bound:

Theorem 3.5.1 (Erdős, 1947 [34] and Erdős, and Rado, 1952 [45]). For any k ∈ Z+,

there exist constants c1, c2 depending only on k such that for all m,

2c1mk−1/k! < Rk(m; 2) < 22..
.2

c2m}
k − 1

Corollary 3.5.2. There exists constants c1, c2 such that

2c1m2

< R3(m; 2) < 22c2m

.

For discussion on the origins of Theorem 3.5.1, see [24, p. 30], [38, p. 18], and [43,

p. 140]. For other known bounds on the Ramsey numbers R(a, b) and Rk(m; r),

see, e.g., [123] or [142].



Chapter 4

Weak graph Ramsey numbers

The values R(G; K2; 2) are known as the “diagonal weak graph Ramsey numbers”,

and in this chapter an “off-diagonal” analog is also defined. Determining both the

diagonal and off-diagonal values has become an area of considerable study in graph

Ramsey theory since the late 1960s. Much of the work in this field is largely due to

Burr, Chvátal, Erdős, Faudree, Rousseau, and Schelp. This chapter presents some

theorems representative of determining both the on- and off-diagonal weak graph

Ramsey numbers.

68
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4.1 Preliminaries

The reader is referred to Appendix A for standard graph theory definitions. For

any graphs G and H, denote the set of weak subgraphs of G isomorphic to H as

(
G
H

)
, that is,

(
G

H

)
= {H ′ ⊆ G : H ′ ∼= H}.

As discussed in the introduction, the standard is often seen as using
(

G
H

)
to denote

instead the set of induced subgraphs of G isomorphic to H (see, e.g., [102]).

For any r ∈ Z+, and any graphs F , G and H, write

F −→ (G)H
r

iff for any r-colouring ∆ :
(

F
H

) → [1, r], there exists G′ ∈ (
F
G

)
such that

(
G′
H

)
is

monochromatic under ∆. Ramsey’s theorem implies that for any k, m, r ∈ Z+,

there exists n = Rk(m; r) such that Kn −→ (Km)Kk
r . Generalizing the Ramsey

number Rk(m; r), for graphs G, H, and r ∈ Z+, let n = R(G; H; r) be the least

integer (if any exists) such that

Kn −→ (G)H
r .

The numbers R(G; H; r), when they exist, are graph Ramsey numbers . The follow-

ing observation echoes a statement made in the introduction:
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Observation 4.1.1. For any k, m, r ∈ Z+, R(Km; Kk; r) = Rk(m; r), and for any

graph G on m vertices, R(G; Kk; r) ≤ R(Km; Kk; r).

This chapter deals strictly in the case when k = 2 (edge colourings). In the same

way the Ramsey numbers were generalized to the “off-diagonal” version Rk(a, b) in

Chapter 3, graph Ramsey numbers can be generalized to off-diagonal versions as

well. Recall from the introduction that for any graphs G1 and G2,

F −→ (G1, G2)
K2
2

means that for any 2-colouring ∆ : E(F ) → {red, blue}, there exists either G′
1 ∈

(
F
G1

)
such that E(G′

1) is monochromatic red, or G′
2 ∈

(
F
G2

)
such that E(G′

2) is

monochromatic blue. Let R(G1, G2) be the least integer n such that

Kn −→ (G1, G2)
K2
2 .

Note that R(G1, G2) ≤ R(G1 ∪̇G2; K2; 2), and R(G; K2; 2) = R(G,G).

4.2 Graph Ramsey numbers for paths

One of the earliest theorems regarding the numbers R(G1, G2) determined the exact

value whenever G1 and G2 are both paths. Recall that the number of edges in a

path P is called the length of P , and for any k ∈ Z+, Pk denotes a path of length

k (which has k + 1 vertices).
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Theorem 4.2.1 (Gerencsér and Gyárfás, 1967 [57]). For all k, ` ∈ Z+, k ≤ `,

R(Pk, P`) =

⌊
k + 1

2

⌋
+ `,

and therefore R(Pk, Pk) =
⌈

3
2
k
⌉
.

Proof. To see that R(Pk, P`) >
⌊

k+1
2

⌋
+`−1, let k, ` ∈ Z+, k ≤ `, n =

⌊
k+1
2

⌋
+`−1.

Let A be any set of ` vertices in Kn, and let B = V (Kn) \ A. Let ∆ be the the

2-colouring of the edges of Kn shown in Figure 4.1. Under ∆, the largest blue path

Figure 4.1: 2-colouring of Kn with no red Pk and no blue P`

has ` vertices.

Claim 1. Every red path of maximum length in Kn starts and ends in A, and goes

back and forth between A and B.

Proof of Claim 1. If k = 1, B = ∅, so assume k > 1. Let P = v1, . . . , vN be any

red path of maximum length, and let P ′ = P \ {vN}. Note that by the maximality

of P ,

for every i ∈ [1, N − 1], if vi ∈ A, then vi+1 ∈ B. (4.1)
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Therefore,

|P ∩ A| ≤ |P ′ ∩ A|+ 1

≤ |P ∩B|+ 1 (by (4.1))

≤ |B|+ 1

=

⌊
k + 1

2

⌋

< k (since k > 1)

≤ `.

Therefore |P ∩ A| < `, and so there exists x ∈ A \ P .

If for any particular i ∈ [1, N − 1], the vertices vi and vi+1 are both in B, then

v1, v2, . . . , vi, x, vi+1, . . . , vN

would be a longer red path. Similarly, if v1 ∈ B, or vn ∈ B, then P could be

extended at the beginning or end respectively using x. This proves Claim 1.

The maximum length of a path starting and ending in A, and going back and forth

between A and B is

|B|+ 1 =

⌊
k + 1

2

⌋
< k.

This proves that R(Pk, P`) >
⌊

k+1
2

⌋
+ `− 1.

Gerencsér and Gyárfás’ proof that R(Pk, P`) ≤
⌊

k+1
2

⌋
+ ` is by induction on `.
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For any fixed k, ` ∈ Z+, k ≤ `, let S(k, `) denote the statement that R(Pk, P`) ≤
⌊

k+1
2

⌋
+ `.

Base Case. The statement S(1, 1) says that R(P1, P1) ≤
⌊

1+1
2

⌋
+1 = 2, which holds.

Inductive Step. Fix b ∈ Z+, b > 1, and assume that for every a ≤ b, S(a, b) holds.

It remains to show that for every a ≤ b + 1, S(a, b + 1) holds.

Fix a ≤ b + 1, n =
⌊

a+1
2

⌋
+ (b + 1), and let ∆ : E(Kn) → {red, blue}. Assume that

under ∆ there is no blue Pb+1.

There are two main cases: when a ≤ b, and when a = b + 1. If a ≤ b, then since

S(a, b) holds,

R(Pa, Pb) ≤
⌊

a + 1

2

⌋
+ b = n− 1,

and therefore under ∆ there is either a red Pa (and the proof is done) or there is a

blue Pb. Let P = v1, . . . , vb+1 denote this blue copy of Pb. Enumerate V (Kn) \ P =

X = {x1, . . . , xba+1
2 c}. Since there is no blue Pb+1, the path P must be maximal.

Therefore, the following two properties hold:

(1) ∀i ∈ [1, b],∀j ∈ [1,
⌊

a+1
2

⌋
], either {xj, vi} or {xj, vi+1} is red, and

(2) ∀j ∈ [1,
⌊

a+1
2

⌋
], {xj, v1} and {xj, vb+1} are both red.

Let S be a maximal red path, say on s vertices, with end points A and B in X, not

containing v1 or vb+1, and such that each edge of S connects a vertex in P with a
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vertex in X. If X ⊆ S, then S has length

2(|X| − 1) = 2

⌊
a + 1

2

⌋
− 2 ≥ 2

(a

2

)
− 2 = a− 2,

and, by property (2), adding the edges {v1, A} and {vb+1, B} would form a red Pa,

completing the proof.

Let T be a maximal red path, say on t vertices, disjoint from S, with end points

C and D in X, not containing v1 or vb+1, and such that each edge of T connects a

vertex in P with a vertex in X (see Figure 4.2). Note that the path T may be as

small as a single vertex (i.e. a path of length 0).

Figure 4.2: The paths S and T

Claim 2. Every vertex in X is either on S or T .

Proof of Claim 2. Assume there exists u ∈ X not on S or T . Then the number

of vertices in P on either S or T is

s− 1

2
+

t− 1

2
=

s + 1

2
+

t + 1

2
− 2
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≤ (|X| − 1)− 2 (by assumption)

=

(⌊
a + 1

2

⌋
− 1

)
− 2

≤
⌊

b

2

⌋
− 2 (since a ≤ b + 1)

<

⌊
b− 1

2

⌋

≤ b− 1

2

Therefore there exists i0 ∈ [2, b − 1] such that vi0 and vi0+1 are not on S or T . By

property (1), at least one of vi0 and vi0+1 is connected to u by a red edge (without

loss of generality, say vi0+1). Then by the maximality of S and T , both {vi0+1, A}

and {vi0+1, C} must be blue. Then, however, again by property (1), {vi0 , A} and

{vi0 , C} must both be red, a contradiction to the maximality of S. This proves

Claim 2.

Now, the circuit Z = v1, S, vk, T, v1 is red, and has length

s + t + 2 = 2

(
s + 1

2
+

t + 1

2

)

= 2|X| (by Claim 2)

= 2

⌊
a + 1

2

⌋
.

If a is odd, then Z contains a red Pa, and the proof is done. Otherwise, Z has

2
⌊

a+1
2

⌋
= a vertices, exactly half of which are in P . Since v1 and vb+1 are both in

Z, and since a
2
≤ b+1

2
, there exists j0 ∈ [1, b] such that neither vj nor vj+1 is in Z.
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By property (1), one of vj and vj+1 connects to the circuit by a red edge, creating

a red Pa. This proves that for every a ≤ b, S(a, b + 1) holds.

Finally, when a = b + 1, since S(b, b) holds, and thus

R(Pb, Pb) ≤
⌊

b + 1

2

⌋
+ b =

⌊a

2

⌋
+ b <

⌊
a + 1

2

⌋
+ b + 1 = n,

there is either a red Pb or a blue Pb. Without loss of generality, one can assume

that there is a blue Pb and no blue Pb+1. From this point, the same proof as above

works, producing a red Pa = Pb+1.

Therefore, by induction, for every k, ` ∈ Z+, k ≤ `, S(k, `) holds, proving the

theorem.

4.3 Small values

Many more values have been found for weak graph Ramsey numbers R(G,H) than

for the traditional Ramsey numbers R(a, b). Several tables of small diagonal and

off-diagonal graph Ramsey numbers were produced in the 1970s and 1980s (see,

e.g., [15, 26, 29, 52, 74]). Chvátal and Harary [27] produced a table of the graph

Ramsey numbers values for all graphs with 4 or fewer vertices (see Table 4.1).

In 1989, Hendry [75] tabulated the off-diagonal graph Ramsey numbers for all but
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R(G,H) K2 P2 2K2 K3 P3 K1,3 C4 K1,3 + e K4 − e K4

K2 2 3 4 3 4 4 4 4 4 4
P2 3 4 5 4 5 4 5 5 7

2K2 5 5 5 5 5 5 5 6
K3 6 7 7 7 7 7 9
P3 5 5 5 7 7 10

K1,3 6 6 7 7 10
C4 6 7 7 10

K1,3 + e 7 7 10
K4 \ e 10 11

K4 18

Table 4.1: R(G,H) for graphs with at most four vertices, and no isolated vertices.

seven pairs of graphs with at most 5 vertices not containing isolated vertices (see

Table 4.2).

Since Hendry produced Table 4.2, four of the missing seven have been found (dis-

played in bold in the table). First, Hendry stated (without proof or reference) that

Figure 4.3: Graphs with exactly five vertices and no isolated vertices
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R
(G

i,
G

j
)

G
1

G
2

G
3

G
4

G
5

G
6

G
7

G
8

G
9

G
1
0

G
1
1

G
1
2

G
1
3

G
1
4

G
1
5

G
1
6

G
1
7

G
1
8

G
1
9

G
2
0

G
2
1

G
2
2

G
2
3

G
1

6
7

6
6

6
6

6
7

6
6

7
7

6
7

7
7

7
7

7
7

7
7

9
G

2
7

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

9
9

11
11

14
G

3
6

7
6

6
6

9
9

9
9

9
9

9
9

9
9

9
13

13
9

13
17

G
4

7
7

7
9

9
9

9
9

9
9

9
9

9
9

9
13

13
9

13
17

G
5

6
6

7
9

9
9

9
9

9
9

9
9

9
9

13
13

9
13

17
G

6
6

8
9

9
9

9
9

9
9

9
9

9
9

13
13

9
13

17

G
7

10
9

9
9

9
10

10
10

9
10

10
13

14
14

13
17

20
G

8
9

9
9

9
9

9
9

9
9

9
9

13
13

11
13

17
G

9
9

9
9

9
9

9
9

9
9

9
13

13
11

13
17

G
1
0

9
9

9
9

9
9

9
9

9
13

13
11

13
17

G
1
1

9
9

9
9

9
9

9
10

13
13

9
13

17
G

1
2

9
9

9
9

9
10

10
13

13
11

13
17

G
1
3

10
10

9
10

10
11

13
13

11
13

17
G

1
4

10
9

10
10

11
13

13
11

13
17

G
1
5

9
9

9
10

13
13

11
13

17
G

1
6

10
10

13
13

13
13

17
19

G
1
7

10
13

14
14

13
17

20
G

1
8

14
14

14
15

17
20

G
1
9

18
18

17
19

25
G

2
0

18
17

19
25

-2
8

G
2
1

15
17

27
G

2
2

22
30

-3
4

G
2
3

43
-4

9

Table 4.2: R(Gi, Gj) for graphs with exactly five vertices and no isolated vertices
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R(G19, G23) = R(K4, K5), and so when R(4, 5) was found to be 25 (by [80] and

[96]), R(G19, G23) was also determined. The others found since are:

R(G18, G23) = R(K5 \ E(K3), K5) = 20 [5, 75],

R(G21, G22) = R(K5 \ E(2K2), K5 \ e) = 17 [75, 144], and

R(G21, G23) = R(K5 \ E(2K2), K5) = 27 [75, 124].

The remaining unknown values are

R(G20, G23) = R(K5 \ E(P2), K5),

R(G22, G23) = R(K5 \ e,K5), and

R(G23, G23) = R(K5, K5) = R(5, 5).

4.4 Other weak graph Ramsey numbers

This section includes selected bounds for other weak graph Ramsey numbers. For

any graph G, let c(G) denote the cardinality of the largest component of G.

Theorem 4.4.1 (Chvátal and Harary, 1972 [27]). For any graphs G1 and G2,

R(G1, G2) ≥ (χ(G1)− 1)(c(G2)− 1) + 1.

Proof. Let n = (χ(G1) − 1)(c(G2) − 1), and consider the graph Kn viewed as

χ(G1)−1 copies of Kc(G2)−1 with edges interconnecting every possible pair of vertices
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(see Figure 4.4). Colour all the edges within each Kc(G2)−1 blue, and colour each

Figure 4.4: General graph Ramsey number lower bound

interconnecting edge red. If there were a red copy of G1, then there would be a

vertex colouring of G1 with χ(G1)− 1 colours, producing no monochromatic edge,

which is impossible. On the other hand, there can be no blue G2, since the largest

blue component has cardinality c(G2)− 1.

Note that when G1 = K` and G2 = Kk, the construction used in the proof of

Theorem 4.4.1 is exactly the first constructive bound given in Section 3.3.

Using the bound given by Theorem 4.4.1, Chvátal produced the precise value of the

graph Ramsey numbers for complete graphs versus trees.
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Theorem 4.4.2 (Chvátal, 1977 [25]). For any m,n ∈ Z+ and any tree T on n

vertices,

R(Km, T ) = (m− 1)(n− 1) + 1.

Proof. The lower bound follows from Theorem 4.4.1. The upper bound is proved by

induction on m+n. For any k ≥ 4, let S(k) be the statement that for all m,n ∈ Z+

such that m + n = k and any tree T on n vertices, R(Km, T ) ≤ (m− 1)(n− 1) + 1.

Base Case: The statement S(4) reduces to R(K2, T2) ≤ 2, which is true, since

R(K2, T2) = R(2, 2) = 2 (by Observation 3.1.4).

Inductive Step: Let k ≥ 5, and assume that S(k− 1) holds. Let m,n ∈ Z+ be such

that m+n = k, and let T be any tree on n vertices. It suffices to show that for any

edge 2-colouring of K(m−1)(n−1)+1, there is either a red Km or a blue T .

Fix a colouring ∆ : E(K(m−1)(n−1)+1) → {red, blue}. Let x be any leaf node of Tn,

and let T ′ = T \ {x}. Then, since S(k − 1) holds, R(Km, T ′) ≤ (m− 1)(n− 2) + 1,

and therefore either K(m−1)(n−1)+1 contains a red Km, in which case S(k) holds, or

a blue T ′, so assume there is a blue T ′. Remove the n − 1 points of the blue copy

of T ′. Then again since S(k− 1) holds, the remaining K(m−2)(n−1)+1 either contains

a red Km−1 or a blue T . If it has a blue T , again S(k) holds, so assume it contains

a red Km−1. Therefore the original coloured K(m−1)(n−1)+1 contains both a blue T ′

and a red Km−1, disjoint from one-another. Let y be the end point in T ′ that x
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was connected to, and consider the edges from y to the red Km−1. If even one edge

between y and the red Km−1 is coloured blue, a blue T is formed, and S(k) holds.

However, the alternative is that all edges between y and the red Km−1 are red, in

which case a red Km is formed, again showing that S(k) holds.

Therefore by mathematical induction, for all k ≥ 4, S(k) holds.

Recall (see Appendix) that for graphs H1 and H2, H1 ∪̇H2 is the disjoint union of

H1 and H2.

Theorem 4.4.3 (Burr, Erdős, and Spencer, 1975 [16]). For all graphs G,H1, and

H2,

R(G,H1 ∪̇H2) ≤ max{R(G,H1) + |V (H2)|, R(G,H2)}, (4.2)

and further, for all m, n ≥ 1,

R(mG,nH) ≤ R(G,H) + (m− 1)|V (G)|+ (n− 1)|V (H)|.

Proof. Let G,H1, H2 be graphs. Let n = max{R(G,H1)+ |V (H2)|, R(G,H2)}, and

2-colour E(Kn) with red and blue. Since n ≥ R(G,H2), there is either a red G, in

which case the proof is done, or a blue H2. If there is a blue H2, remove its vertices

to be left with n − |V (H2)| vertices. However, n − |V (H2)| ≥ R(G,H1) and thus

the remaining complete graph must contain either a red G, in which case again the

proof is done, or a blue H1, in which case there is a blue copy of H1 ∪̇ H2 in the
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original graph.

The second bound is proved by induction on m + n. For any k ≥ 2, let S(k) be the

statement that for all m,n ∈ Z+ such that m + n = k, it holds that R(mG,nH) ≤

R(G,H) + (m− 1)|V (G)|+ (n− 1)|V (H)|.

Base Case: The statement S(2) reduces to R(G,H) ≤ R(G,H), which is true.

Inductive Step: Let k ≥ 2, and assume S(k) holds. Let m,n be such that m + n =

k + 1. Since k ≥ 2, one of m and n is at least two, without loss of generality, say

n ≥ 2. Then

R(mG, nH) = R(mG, (n− 1)H ∪̇H)

≤ max{R(mG, (n− 1)H) + |V (H)|, R(mG,H)} (by (4.2))

= R(mG, (n− 1)H) + |V (H)|

≤ R(G, H) + (m− 1)|V (G)|+ (n− 2)|V (H)|+ |V (H)| (by S(k))

= R(G, H) + (m− 1)|V (G)|+ (n− 1)|V (H)|.

Therefore S(k + 1) holds, and so by mathematical induction, for all k ≥ 2, S(k)

holds.

Recall (see Appendix) that for any graphs G and H, G + H is the graph formed by

joining disjoint copies of G and H by every possible edge.
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Theorem 4.4.4 (Burr and Erdős, 1973 [16]). For any graphs G and H, and n =

R(G,H),

R(G + K1, H) ≤ R(K1,n, H).

Proof. Let G,H be graphs, n = R(G,H), and let N = R(K1,n, H). Colour the

edges of KN with red and blue. If there is a blue H, the result holds, so assume

there is none. Then by the definition of N , there is a red K1,n, and by the definition

of n, there is either a blue H, in which case the result again holds, or a red copy of

G, which produces a red G + K1.

Here are some other representative theorems in the field, provided with references,

but without proofs:

Theorem 4.4.5 (Parsons, 1973 [117]). For m,n ∈ Z+, R(Pm, Kn) = m(n− 1) + 1.

Theorem 4.4.6 (Burr, 1974 [14]). Let Tm be any tree on m vertices, and assume

that m− 1 divides n− 1. Then R(Tm, K1,n) = m + n− 1.

Theorem 4.4.7 (Parsons, 1974 [118]). If n ≥ m ≥ 3,

R(Pm, K1,n) = max{R(Pm−1, K1,n), R(Pm, K1,n−m) + m}.

Theorem 4.4.8 (Burr, Erdős, and Spencer, 1975 [22]). For m,n ∈ Z+,

(a) if m ≥ n ≥ 1,m ≥ 2, then R(mK3, nK3) = 3m + 2n,
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(b) if m ≥ n,m ≥ 2, then R(mK1,3, nK1,3) = 4m + n− 1,

(c) R(nG, nK2) = (|V (G)|+ 1)n− 1,

(d) if n ≥ 2, then R(nKm, nP2) = (m + 2)n− 1, and

(e) if n ≥ 2, and G is not complete, then R(nG, nP2) = (|V (G)|+ 1)n− 1.

Theorem 4.4.9 (Burr, Erdős, Faudree, Rousseau, and Schelp, 1989 [19]). For any

tree T on n vertices, and maximum degree d,

R(C4, T ) = max{4, n + 1, R(C4, K1,d)}.

When k > 2 or r > 2, very little work in comparison has been done for determining

the values R(G; Kk; r). The graph arrow notation, and off-diagonal graph Ramsey

numbers R(G1, G2) have a natural generalization to r colours, just as the Ramsey

numbers R(a, b) generalized to R(m1, . . . , mr). For any graphs F, G1, . . . , Gr, and

H, write

F −→ (G1, . . . , Gr)
H
r

iff for any r-colouring ∆ :
(

F
H

) → [1, r], there exists i ∈ [1, r] and G′
i ∈

(
F
Gi

)
such that

(
G′i
H

)
is monochromatic in the i-th colour under ∆. In general, let R(G1, . . . , Gr; H)

denote the least integer n (if any exists) such that Kn −→ (G1, . . . , Gr)
H
r . For any

k, r ∈ Z+, and any graphs G1, . . . , Gr, the values R(G1, . . . , Gr; Kk) do exist since

R(G1, . . . , Gr; Kk) ≤ R(G1 ∪̇ · · · ∪̇Gr; Kk).



Chapter 5

Induced graph Ramsey theory

One might ask if there exists a graph F ′ such that F ′ −→ (G)Kk
r with the added

condition that the found monochromatic copy of G must be an induced subgraph

of F ′. The main result of this chapter is that for any graph G and any k, r ∈ Z+,

there exists such an F ′.

5.1 Definitions

For any graphs G and H, denote the set of induced subgraphs of G isomorphic to

H by
(

G

H

)

ind

= {H ′ ¹ G : H ′ ∼= H}.

86
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For any r ∈ Z+, and graphs G and H, write

F
ind−→ (G)H

r

iff for every ∆ :
(

F
H

)
ind
→ [1, r], there exists G′ ∈ (

F
G

)
ind

such that
(

G′
H

)
ind

is mono-

chromatic under ∆. For any r ∈ Z+, and any graphs G and H, let Rind(G; H; r)

be the least integer n (if any exists) such that there exists a graph F on n vertices

such that F
ind−→ (G)H

r . The numbers Rind(G; H; r) are called induced graph Ramsey

numbers .

5.2 Relationship to weak graph Ramsey numbers

For all k, m, r ∈ Z+,

Rind(Km; Kk; r) = R(Km; Kk; r) = Rk(m; r).

In general, the problem of determining for some r ∈ Z+, and graphs G and H

whether the induced graph Ramsey number Rind(G; H; r) exists is different than

determining if R(G; H; r) exists. Consider the following two examples: First,

K3 −→ (P2)
K2
2 , but K3

ind

6−→ (P2)
K2
2 , and therefore a (weak) graph Ramsey ar-

row does not imply the corresponding induced graph Ramsey arrow. Second, for

any n ≥ 3, P2 ∪̇Kn
ind−→ (P2 ∪̇Kn)P2

2 , but P2 ∪̇Kn 6−→ (P2 ∪̇Kn)P2
2 , and therefore
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an induced graph Ramsey arrow does not imply the corresponding (weak) graph

Ramsey arrow. However, when H is complete (the most studied case), the induced

Ramsey arrow is stronger than the weak Ramsey arrow (F
ind−→ (G)Kk

r implies that

F −→ (G)Kk
r ).

In the weak case, it is true that for any graphs G and G′ such that G′ ⊆ G,

R(G′; Kk; r) ≤ R(G; Kk; r), and therefore for any graph G on m vertices, R(G; Kk; r) ≤

R(Km; Kk; r), which exists by Ramsey’s theorem (as mentioned in the introduction,

p. 8). The analogous statement for induced subgraphs does hold.

Observation 5.2.1. For any graphs G and G′ such that G′ ¹ G, if Rind(G; Kk; r)

exists, then Rind(G
′; Kk; r) ≤ Rind(G; Kk; r).

However, if G′ ⊆ G, then no such relation holds, as exhibited by the following

observation (which is likely folklore, but I couldn’t find it in the literature).

Observation 5.2.2. If Rind(P2; K1; 2) exists, then Rind(P2; K1; 2) > Rind(K3; K1; 2).

Proof. By the pigeonhole principle, Rind(K3; K1; 2) = 5. Let F be any graph on

five vertices. It remains to show that there exists a colouring of the vertices of F

such that every induced copy of P2 is not monochromatic.

Claim. There are three vertices I = {x, y, z} ⊆ V (F ) such that the induced

subgraph on I, F [I], is not isomorphic to P2.



5.3. Off-diagonal generalization 89

Proof of Claim. If F is bipartite, then let I be any set of three independent

vertices. If F is not bipartite, then F contains an odd cycle. If F contains a C3,

then let I be the vertices of this C3. Otherwise, F is exactly the graph C5, which

contains such a triple. This proves the claim.

Let ∆ : V (F ) → {red, blue} be defined by ∆(x) = ∆(y) = ∆(z) = red, and the

other two vertices both blue.

The same colour grouping argument used to prove Proposition 5.2.3 can be used to

prove the analogous theorem for the induced arrow. The proof is omitted.

Proposition 5.2.3 (Ramsey, 1930 [126]). Let k ∈ Z+. If for any graph G, the

induced Ramsey number Rind(G; Kk; 2) exists, then for any r > 2, it holds that for

any graph G, Rind(G; Kk; r) exists as well.

5.3 Off-diagonal generalization

Similar to the Ramsey numbers in Chapter 3, and the graph Ramsey numbers in

Chapter 4, one can generalize the induced graph Ramsey arrow and these induced

graph Ramsey numbers to off-diagonal versions. For any graphs F , H, G1, and G2,

write

F
ind−→ (G1, G2)

H
2
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iff for every ∆ :
(

F
H

)
ind

→ {red, blue}, there either exists G′
1 ∈

(
F
G1

)
ind

such that

(
G′1
H

)
ind

is monochromatic red, or there exists G′
2 ∈ (

F
G2

)
ind

such that
(

G′2
H

)
ind

is

monochromatic blue. Let Rind(G1, G2) denote the least integer n (if any exists)

such that there exists a graph F on n vertices such that F
ind−→ (G1, G2)

K2
2 . Note

that Rind(G1, G2) ≤ Rind(G1 ∪̇G2; K2; 2), and therefore proving the existence of the

diagonal version implies the off-diagonal.

Very few results bounding induced Ramsey numbers are known, but the interested

reader can find such bounds in, e.g., [58, 59, 60, 73, 83, 88, 93].

5.4 Colouring vertices (H = K1)

For any two graphs G and H, the lexicographic product of G and H, denoted G⊗H,

is the graph with vertices V (G)× V (H), and edge set E, where

{(u1, v1), (u2, v2)} ∈ E iff





{u1, u2} ∈ E(G), or

u1 = u2 and {v1, v2} ∈ E(H).

By the definition, note that “⊗” is not commutative.

Note that this notation “⊗” is certainly non-standard, and that this lexicographic

product is one of many different types of products on graphs. For more information

on this and other types (e.g., direct product, cartesian product), see [76].
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Folkman showed that for any graph G, Rind(G; K1; 2) exists.

Theorem 5.4.1 (Folkman, 1970 [53]). For any graph G,

G⊗G
ind−→ (G)K1

2 .

Proof. Let G be a graph, and let F = G ⊗ G. Let ∆ : V (F ) → {red, blue} be

a {red, blue}-colouring of V (F ). If there exists a vertex x0 ∈ V (G) such that for

all y ∈ V (G), (x0, y) is coloured red, then there is an induced red copy of G on

the vertices {(x0, y) : y ∈ V (G)}, and the theorem is proved. Otherwise, for every

vertex x ∈ V (G), there exists y = y(x) ∈ V (G) such that (x, y(x)) is coloured blue.

Then there is an induced blue copy of G on the vertices {(x, y(x)) : x ∈ V (G)}.

5.5 Colouring edges (H = K2)

The problem of determining whether or not, for any graph G, there exists a graph

F such that F
ind−→ (G)K2

2 was also solved. The proofs of the existence of such

an F were first published independently by Deuber in 1975 [32], Erdős, Hajnal,

and Pósa in 1975 [42], and Rödl in 1976 [130]. The first proof presented below

is based on Deuber’s [32] original proof, as given in [33] (Section 5.5.1), which is

an inductive construction. The second proof presented is due to Nešetřil and Rödl
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in 1981 [109] (Section 5.5.3), and uses a technique called “partite amalgamation”

(which is covered in Section 5.5.2).

5.5.1 Deuber’s proof

First some notation is needed. For q ∈ Z+, and f a function, f q denotes the q-fold

composition of f , f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
q

, and let f 0 denote the identity function.

For any graphs G and H, and any induced subgraph U ¹ G, the generalized lexi-

cographic product of G and H over U , denoted G⊗U H, is the graph with vertices

V (U ⊗H) ∪ ((V (G) \ V (U))× {∅}) and edge set E where

{(u1, v1), (u2, v2)} ∈ E iff





{(u1, v1), (u2, v2)} ∈ E(U ⊗H), or

v1 = ∅ and {u1, u2} ∈ E(G).

Note Figure 5.1, and other figures in this section, are based on those found in [33].

Deuber proved the following off-diagonal theorem.

Theorem 5.5.1 (Deuber, 1975 [32]). For any graphs G1, G2, there exists a graph

F such that F
ind−→ (G1, G2)

K2
2 .

Proof. This proof is found in Diestel’s “Graph Theory” [33, pp. 259–262] with

only notational changes. The proof is by strong induction on |V (G1)| + |V (G2)|.
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Figure 5.1: A generalized lexicographic product

For any n ∈ Z+, let S(n) be the statement that for any graphs G1 and G2 such that

|V (G1)|+ |V (G2)| = n, there exists an F such that F
ind−→ (G1, G2)

K2
2 .

Base Case: If either of G1 or G2 contain no edges (which includes the case when

|V (G1)| + |V (G2)| ≤ 2), then for k = max{|V (G1)|, |V (G2)|}, Kk
ind−→ (G1, G2)

K2
2 .

Therefore S(2) holds.

Inductive Step: Let k ≥ 2, and assume that S(2), . . . , S(k) all hold. Let G1, G2 be

graphs, each with at least one edge, such that |V (G1)|+ |V (G2)| = k + 1. For each

` ∈ {1, 2}, fix x` ∈ V (G`), incident with at least one edge, let G′
` = G`\{x`}, and let

G′′
` = G`[N(x`)], the graph induced in G` on the vertex set N(x`) (see Figure 5.2).

By S(k), there exists graphs F1 and F2 such that F1
ind−→ (G1, G

′
2)

K2
2 and F2

ind−→
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Figure 5.2: The graphs G`, G′
`, and G′′

` .

(G′
1, G2)

K2
2 . A sequence of graphs Γ1, Γ2, . . . , Γn+1 is now constructed such that

Γn+1
ind−→ (G1, G2)

K2
2 .

Let Γ1 = F1. Let n =
∣∣∣
(

Γ1

G′2

)
ind

∣∣∣ and enumerate
(

Γ1

G′2

)
ind

= {W ′
1,W

′
2, . . . ,W

′
n}. For

each i ∈ [1, n], fix W ′′
i ∈

(
W ′

i

G′′2

)
ind

. Let V1 = V (Γ1).

For the inductive step of the construction, let i ∈ [1, n], and assume that Γ1, . . . , Γi

and V1, . . . , Vi have all been defined. Further, if i > 1, assume that a function

f : V2 ∪ · · · ∪ Vi → V1 ∪ · · · ∪ Vi−1 has been defined such that for all j ∈ [2, i],

f(Vj) = Vj−1. Note that f q−1(Vq) = V1. Let Ui = {v ∈ Vi : f i−1(v) ∈ W ′′
i } (then

U0 = W ′′
1 ).

Defining Γi+1 is done in two steps. First, let Γ̂i+1 = Γi ⊗Γi[Ui] F2, and define

Vi+1 ⊆ V (Γ̂i+1) as Vi+1 = {(a, b) ∈ V (Γ̂i+1) : a ∈ Vi}. For each u ∈ Ui, let

F2(u) denote the copy of F2 in Γ̂i+1 that replaces u. Enumerate Ui = {u1, . . . , um}.
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Second, let

C =

{
(G′

1(u1), G
′
1(u2), . . . , G

′
1(um)) : G′

1(uj) ∈
(

F2(uj)

G′
1

)

ind

}
.

For each C = (G′
1(u1), . . . , G

′
1(um)) ∈ C, add a new vertex x(C) to Γ̂i+1. For each

u ∈ Ui, fix

G′′
1(u) ∈

(
G′

1(u)

G′′
1

)

ind

.

Finally, join x(C) to every vertex in the set {V (G′′
1(u1)) ∪ · · · ∪ V (G′′

1(um))}. The

resulting graph is Γi+1 (see Figure 5.3).

Figure 5.3: The inductive construction: Γi → Γi+1

Extend f : V2∪· · ·∪Vi → V1∪· · ·∪Vi−1 to the function f̂ : V2∪· · ·∪Vi+1 → V1∪· · ·∪Vi
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by defining for each v ∈ Vi+1,

f̂(v) =





u if v ∈ F2(u), u ∈ Ui, or

v′ if v = (v′, ∅), v′ ∈ Vi \ Ui.

This completes the inductive definition of Γ1, Γ2, . . . , Γn+1.

Claim. For all i ∈ [1, n + 1], and for any red-blue colouring of the edges of Γi,

there exists either (a) a red induced copy of G1, (b) a blue induced copy of G2, or

(c) a blue induced Λ, where V (Λ) ⊆ Vi and there exists k ∈ {i, . . . , n} such that

the restriction of f i−1 to V (Λ) is an isomorphism between Λ and W ′
k.

(Note that case (c) cannot occur when i = n + 1, and therefore proving the claim

proves that Γn+1
ind−→ (G1, G2)

K2
2 .)

Proof of Claim. The proof of the claim is by strong induction on i. For any

j ∈ [1, n + 1], let T (j) be the statement that for any red-blue colouring of the edges

of Γj, one of (a), (b), or (c) holds.

Base Case: Let ∆ : E(Γ1) → {red, blue}. Then since Γ1 = F1, and F1
ind−→

(G1, G
′
2)

K2
2 , there is either an red induced copy of G1, and (a) holds, or there is a

blue copy of G′
2, and since any copy of G′

2 is one of the W ′
k’s by definition, (c) holds.

Therefore T (1) is true.

Inductive Step: Let i ∈ [1, n], and assume that T (1), . . . , T (i) all hold. Let ∆ :
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E(Γi+1) → {red, blue}. For each u ∈ Ui, there exists F2(u) ∈ (
Γi+1

F2

)
ind

. Since

F2
ind−→ (G′

1G2)
K2
2 , each copy of F2 either contains a red copy of G′

1 or a blue copy

of G2. If there exists u0 ∈ Ui such that F2(u0) contains a blue induced copy of G2,

then (b) holds, so assume for all u ∈ Ui, F2(u) does not contain a blue induced copy

of G2. Then for all u ∈ Ui, F2(u) contains a red induced copy of G′
1, call it G′

1(u).

Enumerate Ui = {u1, . . . , um}, and let C = (G′
1(u1), . . . , G

′
1(um)). Then for every

u ∈ Ui, there exists

G′′
1(u) ∈

(
G′

1(u)

G′′
1

)

ind

and x = x(C) ∈ V (Γi+1) such that x is connected to every vertex in the set

⋃
u∈Ui

V (G′′
1(u)). If for any particular u0 ∈ Ui all the edges

{{x, v} : v ∈ V (G′′
1(u0))}

are red, then G′
1(u0) together with x forms a red G1, and (a) holds. Otherwise, for

every u ∈ Ui, there exists yu ∈ V (G′′
1(u)) such that the edge {x, yu} is blue. Let

D = {yu : u ∈ Ui} ∪ {(v, ∅) : v ∈ V (Γi) \ Ui}. Then f restricted to D, f |D, is

an isomorphism between Γi+1[D] and Γi. Therefore the 2-colouring on the edges of

Γi+1[D] induces a 2-colouring on the edges of Γi. By T (i − 1), one of (a), (b), or

(c) holds for Γi. If (a) or (b) holds for Γi, then using f |D, the same holds in Γi+1,

so assume (c) holds in Γi. Then there exists an induced blue Λ ¹ Γi such that

V (Λ) ⊆ Vi, and there exists k ∈ {i, . . . , n} such that the restriction of f i−1 to V (Λ)
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is an isomorphism between Λ and W ′
k.

If k ∈ {i, . . . , n}, then Λ̂ = (f |D)−1(Λ) satisfies (c) in Γi+1.

Otherwise k = i − 1. Then the restriction of f i−1 to V (Λ) is an isomorphism

between Λ and W ′
i−1. Since Λ is a copy of W ′

i−1, let Λ′′ ¹ Λ be defined as the

induced subgraph with V (Λ′′) = {v ∈ V (Λ) : f i−1(v) ∈ W ′′
i } (Λ′′ is a copy of W ′′

i ).

Then by the definition of Ui, V (Λ′′) ⊆ Ui (see Figure 5.4).

Figure 5.4: Producing a monochromatic copy of G2

Then Λ̂′′ = (f |D)−1(Λ′′) ∈ (
Λ̂

W ′′
i−1

)
is such that V (Λ̂′′) ⊆ {yu : u ∈ Ui}. Therefore
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each vertex in Λ̂′′ is attached to x by a blue edge. Since Λ itself was blue, so is all of

Λ̂. Therefore Λ̂ together with x forms a blue copy of G2. Therefore T (i + 1) holds.

Therefore by induction, for all j ∈ [1, n + 1], T (j) holds, which in turn proves the

theorem.

5.5.2 Partite Amalgamation

The partite amalgamation (or simply amalgamation) process was developed by

Nešetřil and Rödl, and, according to Nešetřil, “originated in 1976” [102, p. 1389]).

Various versions of amalgamation have been used to prove a number of theorems

in a constructive manner (see e.g. [102, 108, 109, 110, 111, 113, 114, 115]). What

follows is one type of amalgamation, known as ∗J -amalgamation (for graphs).

Recall (see Appendix) that for any k ∈ Z+, a graph G is k-partite iff there exists a

partition of V (G) = V1∪· · ·∪Vk such that for each edge {x, y} ∈ E(G), there exists

i, j ∈ [1, k], i 6= j, such that x ∈ Vi and y ∈ Vj. To emphasize that a graph G is

k-partite, one can write G = (V1∪ · · ·∪Vk, E). A 2-partite graph is called bipartite.

When focusing specifically on partite graphs, a notation analogous to that for in-

duced subgraphs is used: let G = (V1∪· · ·∪Vn, E(G)) be an n-partite graph, and let

H = (W1∪· · ·∪Wm, E(H)) be an m-partite graph. Then H is an induced m-partite
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subgraph of G, written H ¹part G, iff there exists an injection f : [1,m] → [1, n]

such that for all i ∈ [1,m], Wi ⊆ Vf(i), and E(H) = E(G) ∩ [W1 ∪ · · · ∪Wm]2. The

set of partite induced subgraphs of G that are isomorphic to H is denoted

(
G

H

)

part

= {H ′ ¹part G : H ′ ∼= H}.

Perhaps it would be more consistent to denote this instead as “
(

G
H

)
part

ind
”, but since

weak partite subgraphs are not of interest here, the “ind” can be dropped.

Let a, b ∈ Z+ with a ≤ b, let A = (X1 ∪ · · · ∪Xa,A) be an a-partite graph, and let

B = (Y1 ∪ · · · ∪ Yb,B) be a b-partite graph. Let Y = ∪b
i=1Yi. Fix J ∈ [1, b]a, and

fix an order preserving bijection f : J → [1, a]. The ∗J-amalgamation of B with A,

Figure 5.5: ∗J -amalgamation

denoted B ∗J A, is defined as follows. Let BJ be the induced subgraph of B on the
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vertices ∪j∈JYj, i.e.,

BJ =


 ⋃

j∈J

Yj, B ∩
[ ⋃

j∈J

Yj

]2

 .

Let
∣∣∣
(

A
BJ

)
part

∣∣∣ = q, and enumerate
(

A
BJ

)
part

= {B1
J , B2

J , . . . , Bq
J}. For all i ∈ [1, b],

define

Zi =





Xf(i) if i ∈ J , and

Yi × [1, q] otherwise.

For each j ∈ [1, q], fix an isomorphism φj : BJ → Bj
J , and extend φj to the function

ψj : Y → ⋃b
i=1 Zi by

ψj(y) =





φj(y) if y ∈ BJ , and

(y, j) otherwise.

Define the edge set E as E = {{ψj(v1), ψj(v2)} : {v1, v2} ∈ E(B), j ∈ [1, q]} ∪E(A).

Finally, the ∗J -amalgamation B ∗J A is the b-partite graph (Z1 ∪ · · · ∪ Zb, E) (see

Figure 5.5).

5.5.3 Nešetřil and Rödl’s proof

For any d,m ∈ Z+, any d-set X, and Y = [X]m, let B(d,m) denote the bipartite

graph (X ∪ Y, E), where {x,A} ∈ E iff x ∈ A.
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Figure 5.6: A sample graph of the form B(d,m).

Nešetřil and Rödl’s proof that for every graph G, Rind(G; K2; 2) exists uses the

following lemma:

Lemma 5.5.2 (Nešetřil and Rödl 1981 [109]). For any bipartite graph G, there

exists d,m ∈ Z+ such that G ¹ B(d,m).

Proof. Let G = (V1 ∪ V2, E) be a bipartite graph, and let k1 = |V1|, k2 = |V2|.

Enumerate V1 = {v1, v2, . . . , vk1}, V2 = {w1, w2, . . . , wk2}, and let Q = {q1, . . . qk1}

be a set of k1 elements, disjoint from both V1 and V2. It suffices to prove the

following claim:

Claim: G ¹ B(|V1|+ |V2|+ |Q|, k1 + 1) = B(k2 + 2k1, k1 + 1).

Let X = V1 ∪ V2 ∪ Q, Y = [X]k1+1. For any w ∈ V2, let `(w) = |V1 \ N(w)|, let

Q(w) be any set in [Q]`, and define S(w) = N(w) ∪ {w} ∪ Q(w). Then |S(w)| =
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|V1|+1 = k1+1, and therefore S(w) ∈ Y . If S(w1) = S(w2), then w1 = S(w1)∩V2 =

S(w2) ∩ V2 = w2. Therefore if w1 6= w2, S(w1) 6= S(w2). Let f : V (G) → X ∪ Y be

defined by f(v) = v if v ∈ V1, and f(v) = S(v) if v ∈ V2. Then f is an embedding

of G into an induced subgraph of B(k2 + 2k1, k1 + 1).

For any k ∈ Z+, and k-partite graphs F and G, write

F
ind−→part (G)K2

2

iff for every ∆ : E(F ) → {red, blue}, there exists G′ ∈ (
F
G

)
part

such that E(G′) is

monochromatic under ∆.

Theorem 5.5.3 (Bipartite Lemma, Nešetřil and Rödl, 1981 [109].). For all r ∈ Z+,

and for every bipartite graph B, there exists a bipartite graph RB such that

RB
ind−→part (B)K2

r .

Proof. This proof is based on that given in [68]. By Lemma 5.5.2, assume without

loss of generality that for some d,m ∈ Z+, B = B(d,m). Let ` = r(m− 1) + 1 and

n = R`(d`; r
(

`
m

)
). Let RB = B(n, `). To prove Theorem 5.5.3, it suffices to prove

that

RB
ind−→part (B)K2

r .

Let ∆ : E(RB) → [1, r]. Assume the partite sets of B(n, `) are X = {x1, . . . , xn}

and Y = [X]`. For each S = {s1, . . . , s`} ∈ Y (ordered respecting the ordering of



5.5. Colouring edges (H = K2) 104

X), define ∆S : S → [1, r] by ∆S(s) = ∆({s, S}). Since |S| = ` = (m − 1)r + 1,

the pigeonhole principle implies that there exists β(S) = {β1, . . . , βm} ∈ [1, `]m and

cs ∈ [1, r] such that C(S) = {sβ1 , . . . , sβm} ∈ [S]m is monochromatic under ∆S in

the colour cs. That is, for all x ∈ C(S), ∆({x, S}) = cs (see Figure 5.7).

Figure 5.7: The set C(S)

Define ∆′ : Y → [1, r] × [1, `]m by ∆′(S) = (cS, β(S)). Since Y = [X]`, and |X| =

n = R`

(
d`; r

(
`
m

))
, there exists R ∈ [X]d` such that ∆′ is constant on [R]`, i.e., there

exists c ∈ [1, r], β = {β1, . . . , βm} ∈ [1, `]m such that for all S = {s1, . . . , s`} ∈ [R]`

(respecting the ordering of X), C(S) = {sβ1 , . . . , sβm} is such that for all x ∈ C(S),

∆({x, S}) = c (see Figure 5.8).
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Figure 5.8: The set R

Respecting the ordering on X, enumerate R = {r1, . . . , rd`}, and let

R′ = {rβ1 , rβ1+`, . . . , rβ1+(d−1)`};

note that since β1 ≤ `, it follows that β1 + (d− 1)` ≤ d` = |R|, and thus R′ is well

defined.

Informally, for each A ∈ [R′]m, let SA ∈ [R]` be such that SA ∩ R′ = A, and the

elements of A are positioned in positions β = {β1, . . . , βm} inside SA. Formally, for

each A = {a1, . . . , am} ∈ [R′]m, let SA = {b1, . . . , b`} ∈ [R]` (ordered respecting the

ordering of X) be such that for each i ∈ [1,m], bβi
= ai, and for each j ∈ [1, `] \ β,

bj ∈ R \R′ (see Figure 5.9).
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Figure 5.9: Definition of SA

The the induced subgraph of RB on the partite sets

R′ ⊆ X and {SA : A ∈ [R′]m} ⊆ Y

is a copy of B(d,m), monochromatic in colour c. This completes the proof.

Theorem 5.5.4 (Nešetřil and Rödl, 1981 [109]). For all r ∈ Z+, and for any graph

G, there exists a graph F such that F
ind−→ (G)K2

r .

Proof. A sequence of graphs P 0, P 1, . . . , P (s
2) is constructed inductively, and the

graph F = P (s
2) is the required graph.

Let G be a finite graph, and fix r ∈ Z+. Let m = |V (G)|, and by Ramsey’s theorem,

let s = R2(m; r). Let H = {1, 2, . . . , s}. Enumerate [H]2 = {e1, e2, . . . , e(s
2)
} and
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[H]m = {A1, A2, . . . , A( s
m)}. For all i ∈ {1, 2, . . . , s}, define the set V 0

i as

V 0
i = {i} ×

{
1, 2, . . . ,

(
s

m

)}
.

For each j ∈ {1, 2, . . . , ( s
m

)}, fix a bijection fj : V (G) −→ Aj × {j}. Define E as

E =

{
{(i, j), (i′, j)} : {f−1

j (i, j), f−1
j (i′, j)} ∈ E(G), j = 1, 2, . . . ,

(
s

m

)}
.

Then let P 0 be the s-partite graph P 0 = (V 0
1 ∪ V 0

2 ∪ · · · ∪ V 0
s , E). In effect, P 0 is a

graph with one copy of G across each row, each copy drawn on a different collection

of m vertices.

Let k ≥ 0, and assume that P k = (V k
1 ∪V k

2 ∪ . . .∪V k
s , Ek) has been defined. Assume

ek+1 = {α1, α2}, and let B be the induced bipartite subgraph of P k on the vertices

V k
α1
∪ V k

α2
. Then by Theorem 5.5.3, there exists a bipartite graph, call it RB, such

that RB
ind−→part (B)K2

r . Then let J = {α1, α2}, define P k+1 = P k ∗J RB. This

completes the inductive construction.

Colour the edges of P (s
2) with r colours. Assume e(s

2)
= {β1, β2}. By construction,

there is a copy of P (s
2)−1, call it P

(s
2)−1

∗ , inside P (s
2), with all edges between the

partitions V
(s
2)−1

β1
and V

(s
2)−1

β2
the same colour. Then again by construction, there

is a copy of P (s
2)−2, call it P

(s
2)−2

∗ , inside P
(s
2)−1

∗ , with all edges between two other

partitions also the same colour. Continue until a copy of P 0, is found, and call

it P 0
∗ . Then P 0

∗ has the property that the colour of each edge is determined by

the pair of partitions it connects. Define an r-colouring ∆ on the set [1, s]2 where
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∆({a, b}) is the colour of all edges between the ath and bth partitions. By the choice

of s, there exists a monochromatic m-set M = {c1, . . . , cm} ∈ [1, s]m such that all

its pairs have the same colour. The subgraph of P 0
∗ on the partite sets V 0

c1
, . . . , V 0

cm

has all its edges the same colour. By the construction of P 0, the subgraph on the

partite sets V 0
c1

, . . . , V 0
cm

contains exactly one induced copy of G.

Using the same proof technique, Nešetřil and Rödl [114] generalized Theorem 5.5.4

to colouring edges in k-uniform hypergraphs, and even more general structures

known as systems.

5.6 Parameter words

Nešetřil and Rödl proved that for any graph G, and any k ∈ Z+, there exists a graph

F such that F
ind−→ (G)Kk

2 using amalgamation techniques (see, e.g., [102, 121]),

but another technique, “parameter sets”, is used here. For more information on

parameter sets, see [122].
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5.6.1 Definitions

An alphabet A is a finite set whose elements are called symbols. For any n ∈ Z+,

define An = {f : [1, n] → A}. Each function f ∈ An can be viewed as the ordered

n-tuple (f(1), f(2), . . . , f(n)) of elements of A. The elements of An are also called

words of length n

Let λ1, λ2, . . . denote symbols not in A, called parameters . For any n ∈ Z+,m ∈

Z+ ∪ {0}, an m-parameter word of length n over the alphabet A, is a function

f : [1, n] → A ∪ {λ1, ..., λm} satisfying (a) ∀i, f−1(λi) 6= ∅ (each λi occurs at least

once), and (b) ∀i < j, min f−1(λi) < min f−1(λj) (the first occurrences of the λ′s

must be in order).

Denote the set of all m-parameter words of length n over A by [A]
(

n
m

)
. For n,m, k ∈

Z+, and two parameter words f ∈ [A]
(

n
m

)
and g ∈ [A]

(
m
k

)
, define the composition

f ◦ g ∈ [A]
(

n
k

)
as

(f ◦ g)(i) =





f(i) if f(i) ∈ A,

g(j) if f(i) = λj.

For f ∈ [A]
(

n
m

)
, define the space of f as

sp(f) =

{
f ◦ g : g ∈ [A]

(
m

0

)}
⊆ An.

An m-dimensional combinatorial subspace (of An) is the space of some m parameter
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word, and a 1-dimensional combinatorial subspace is called a combinatorial line.

For example, let A = {a, b} and, dropping the parentheses and commas, f =

abλ1aλ2λ1 ∈ [A]
(
6
2

)
, and g = bλ1 ∈ [A]

(
2
1

)
. Then f ◦ g is the function abbaλ1b ∈

[A]
(
6
1

)
, and sp(f ◦ g) = {abbaab, abbabb}.

5.6.2 The Hales-Jewett and Graham-Rothschild theorems

The Hales-Jewett theorem is a Ramsey-type theorem about parameter words.

Theorem 5.6.1 (Hales and Jewett, 1963 [71]). Let m, r ∈ Z+, and let A be a finite

alphabet. Then there exists a smallest n = HJ(|A|,m, r) ∈ Z+ such that for all

∆ : [A]
(

n
0

) → {1, . . . , r}, there exists an f ∈ [A]
(

n
m

)
such that ∆ is constant on

sp(f).

The proof is omitted, and can be found e.g., [65], [79], or [121].

The following theorem, known as the Graham-Rothschild theorem, is a generaliza-

tion of the Hales-Jewett theorem, where k-sets of An are being coloured, as opposed

to just points in An (the proof is also omitted).

Theorem 5.6.2 (Graham and Rothschild, 1971 [64]). Let A be a finite alphabet,

and let k, m and r be positive integers. Then there exists a smallest positive integer

n = GR(|A|, k, m, r) such that for every colouring ∆ : [A]
(

n
k

) → {1, . . . , r} there
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exists a monochromatic f ∈ [A]
(

n
m

)
, i.e.,

∆(f ◦ g) = ∆(f ◦ h) for all g, h ∈ [A]

(
m

k

)
.

The proof of the Graham-Rothschild theorem is also omitted.

5.7 Colouring complete subgraphs of larger order

Two proofs are given of the fact that for any k ∈ Z+ and for any graph G, there

exists a graph F such that F
ind−→ (G)Kk

2 . The first such proof uses the Graham-

Rothschild theorem (Theorem 5.6.2), and the second using a theorem known as the

Ordered Hypergraph theorem, which is described in Section 5.8.

5.7.1 Preliminary lemmas

Lemma 5.7.1 (see, e.g., [112]). For every finite graph G, there exists a set X such

that G is an induced subgraph of the graph

H(X) = (P(X), {{A, B} : A,B 6= ∅, A ∩B = ∅}).

Proof. It suffices to show that for X = V (G) ∪ E(G), G ¹ H(X). For each

v ∈ V (G), let Av = {v}∪{e ∈ E(G) : v ∈ e}. Then for all u, v ∈ V (G), Au∩Av = ∅
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iff u 6= v and there exists e = {u, v} ∈ E(G). Then the induced subgraph of H(X)

on the vertex set {Av : v ∈ V (G)} is an induced copy of G.

Observation 5.7.2. For X ⊆ Y , H(X) ¹ H(Y ).

Proof. Let X ⊆ Y . Then P(X) ⊆ P(Y ), and so the induced subgraph of H(Y )

on the vertices P(X) is a copy of H(X).

5.7.2 First proof of induced Ramsey theorem

The main result can now be stated and proved.

Theorem 5.7.3 (see, e.g., [102]). Let G be a finite graph and let k, r ∈ Z+. Then

there exists a graph F such that F
ind−→ (G)Kk

r .

First proof of Theorem 5.7.3. (as given in [68]) By Lemma 5.7.1, any finite

graph can be looked at as an induced subgraph of H(X) for some set X. Thus, it

suffices to fix some set X, and prove the theorem for G = H(X).

Observation. Given a set X = {x0, ..., xm−1}, every Kk-subgraph of H(X) cor-

responds to a set of k disjoint nonempty subsets {Y0, Y1, ..., Yk−1} of X. For an

alphabet A of one element, say 0, {Y0, . . . , Yk−1} can be expressed as a single k-

parameter word f ∈ [A]
(

m
k

)
, by mapping

f(i) = λj iff xi ∈ Yj
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and f(i) = 0 otherwise. Thus the Kk subgraphs of H(X) are equivalent to the

elements of [1]
(

m
k

)
.

Let X = {x0, x1, ..., xm−1}, G = H(X) be given. Let A = {0}, and fix r, k ∈ Z+.

Let n = GR(|A|, k, m, r) and let Y be a set of n elements. the claim is then that

H(Y )
ind−→ (G)Kk

r .

Let ∆0 :
(

H(Y )
Kk

)
ind
→ {1, . . . , r}. By the observation, ∆0 is equivalent to a colouring

∆′
0 : [A]

(
n
k

) → {1, . . . , r}. By the choice of n, there exists f ∈ [A]
(

n
m

)
such that f is

monochromatic under ∆′
0. Let

Z = {f−1(λi) : i ∈ [0,m− 1]}

and let

FU(Z) =

{⋃
i∈I

f−1(λi) : I ⊆ [0,m− 1]

}
.

Since for all i 6= j, f−1(λi) ∩ f−1(λj) = ∅, the bijection between Z and X that

is given by φ(f−1(λi)) = xi also produces an isomorphism between FU(X ) and

P(X). Therefore the induced subgraph of H(Y ) on the vertices FU(X ) is a copy

of G = H(X). Further, by the definition of f , the induced subgraph of H(Y ) on

the vertices FU(X ) has all its Kk-subgraphs the same colour.
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5.8 The Ordered Hypergraph Theorem

5.8.1 Definitions and statement

An ordered hypergraph (H,≤) is a hypergraph H, together with a total (linear)

ordering ≤ on V (H). Two ordered hypergraphs (G,≤1) and (H,≤2) are isomorphic

if there exists an isomorphism f between G and H that is also order preserving (i.e.,

for all x, y ∈ V (G), x ≤1 y iff f(x) ≤2 f(y)). An ordered hypergraph (G,≤1) is an

ordered induced subhypergraph of (H,≤2), denoted by (G,≤1) ¹ (H,≤2), if both

G ¹ H and for every x, y ∈ V (G), x ≤1 y iff x ≤2 y. The set of ordered induced

subhypergraphs of (G,≤1) isomorphic to (H,≤2) is denoted
(

G,≤1

H,≤2

)
ind

. Notation may

be abused slightly by writing (G,≤) and (H,≤), when what is meant is (G,≤1) and

(H,≤2).

For r ∈ Z+, and ordered hypergraphs (F,≤), (G,≤), and (H,≤), write

(F,≤)
ind−→ (G,≤)(H,≤)

r

if for every ∆ :
(

F,≤
H,≤

)
ind
→ [1, r], there exists (G′,≤) ∈ (

F,≤
G,≤

)
ind

such that
(

G′,≤
H,≤

)
ind

is monochromatic under ∆.

The following theorem, known as the Ordered Hypergraph theorem, was published

by Nešetřil and Rödl in 1977 [106] and Abramson and Harrington in 1978 [1].
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Theorem 5.8.1 (The Ordered Hypergraph theorem). For every r ∈ Z+, and any

ordered hypergraphs (G,≤) and (H,≤), there exists an ordered hypergraph (F,≤)

such that

(F,≤)
ind−→ (G,≤)(H,≤)

r .

The proof of Theorem 5.8.1 is omitted, though one proof of it follows the same

reasoning as the amalgamation proof that for any graph G, Rind(G; K2; 2) exists

(Theorem 5.5.4). The interested reader can find proofs of the Ordered Hypergraph

theorem in, e.g., [1, 68, 106, 121]. Note that the Ordered Hypergraph theorem as

presented here is a special case of Nešetřil and Rödl’s version. The following is a

useful consequence of the Ordered Hypergraph Theorem:

Corollary 5.8.2. For any k, r ∈ Z+, and any ordered k-uniform hypergraphs (G,≤)

and (H,≤), there exists an ordered k-uniform hypergraph (F,≤) such that

(F,≤)
ind−→ (G,≤)(H,≤)

r .

Proof. Let (G,≤) and (H,≤) be ordered k-uniform hypergraphs. By the Ordered

Hypergraph theorem, there exists an ordered hypergraph (F,≤) such that

(F,≤)
ind−→ (G,≤)(H,≤)

r .

Let F ′ be the k-uniform hypergraph formed by removing all edges not containing

exactly k elements from F . Then (F ′,≤)
ind−→ (G,≤)

(H,≤)
r , and the proof is complete.
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5.8.2 Second proof of the induced Ramsey theorem

Theorem 5.8.1 nearly immediately implies that for any k ∈ Z+, and any graph G,

Rind(G; Kk; 2) exists (Theorem 5.7.3).

Second Proof of Theorem 5.7.3. (as given in [121]) Let G be any graph, let k ∈

Z+, and let H = Kk. Impose any total (linear) ordering on V (G) and V (H) to form

the ordered graphs (G,≤) and (H,≤). By the corollary to the Ordered Hypergraph

theorem (Corollary 5.8.2), there exists an ordered graph (F,≤) such that (F,≤)
ind−→

(G,≤)
(H,≤)
r . It suffices to prove that F

ind−→ (G)H
r . Let ∆ :

(
F
H

)
ind

→ [1, r]. Note

that since H is complete, there is a one-to-one correspondence between
(

F
H

)
ind

and

(
F,≤
H,≤

)
ind

. Thus ∆ induces a colouring ∆′ :
(

F,≤
H,≤

)
ind
→ [1, r] by ∆′(H ′,≤) = ∆(H ′).

By the choice of (F,≤), there exists a copy (G′,≤) ∈ (
F,≤
G,≤

)
ind

monochromatic under

∆′. The graph G′ ∈ (
F
G

)
ind

is then monochromatic under ∆.

5.8.3 Application: The Ordering Property

The ordering property for a graph, introduced by Nešetřil and Rödl in 1975 [103],

is a consequence of the Ordered Hypergraph theorem. While interesting in its own

sake, it can also be applied to prove some Ramsey theorems about unordered graphs.

One such application is found in Chapter 10 (Theorem 10.1.2).
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Let (H,≤) be an ordered graph, and let G be an unordered graph. The graph G is

said to satisfy the ordering property for (H,≤), denoted

G
ind−→ord (H,≤),

iff for every possible ordering ≤∗ of V (G), there exists (H ′,≤) ∈ (
G,≤∗
H,≤

)
ind

.

Theorem 5.8.3 (Nešetřil and Rödl, 1975 [103]). For every ordered graph (H,≤),

there exists an (unordered) graph G so that G
ind−→ord (H,≤).

Proof. Let (H,≤) be an ordered graph. If H is not connected, add a new vertex

to (H,≤), and connect it to each component of H (the extra vertex can be removed

later without a problem). Let v1 < v2 < ... < vm be the vertices of (H,≤). Let

(H,≤−1) be the ordered graph where for all vi, vj ∈ V (H), vi ≤−1 vj iff vj ≤ vi.

Let (H∗,≤∗) be the graph made up of the ordered disjoint union of (H,≤) and

(H,≤−1) where all vertices in (H,≤−1) come after those in (H,≤); that is, H∗ =

H ∪̇H and for vi in (H,≤), and vj in (H,≤−1), vi ≤∗ vj (see Figure 5.10).

Figure 5.10: The graph (H∗,≤∗)
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By the corollary to the Ordered Hypergraph theorem (Corollary 5.8.2), given the

ordered graphs (H∗,≤∗) and (K2,≤) (note K2 has only one ordering up to isomor-

phism), there exists an ordered graph (G,≤′) such that (G,≤′) ind−→ (H∗,≤∗)K2
2 .

Claim. The graph G satisfies G
ind−→ord (H,≤).

Let ≤′′ be an arbitrary ordering on V (G). Then it remains to show that (H,≤) ¹

(G,≤′′). Let ∆ be a 2-colouring of the edges of (G,≤′), defined as follows: for

x ≤′ y,

∆({x, y}) =





red if x ≤′′ y

blue if y ≤′′ x

Then, by the choice of (G,≤′), there exists a monochromatic (H∗
0 ,≤∗) ∈

(
G,≤′

H∗,≤∗
)
ind

.

If (H∗
0 ,≤∗) is monochromatic red, then the non-inverted copy of (H,≤) in (H∗

0 ,≤∗)

is a copy of (H,≤) in (G,≤′′), and the theorem is proved. If not, then (H∗
0 ,≤∗)

is monochromatic blue, and the inverted copy of (H,≤) in (H∗
0 ,≤∗) is a copy of

(H,≤) in (G,≤′′).

Note that it was required that H is connected, since if it weren’t, (G,≤′′) could

have the components of (H,≤) and/or (H,≤−1) backwards, and a copy of (H,≤)

ordered exactly as needed could not be guaranteed. Finally, if a new vertex v was

added in the beginning to make H connected, then v and the edges v is incident

with can now be removed to yield the desired induced subgraph.
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5.8.4 The Partite lemma

Nešetřil and Rödl’s proof of the Ordered Hypergraph theorem used a generalization

of the Bipartite Lemma (Theorem 5.5.3), generalized to more complex set systems.

In fact, according to Nešetřil [102], the amalgamation generally follows the same line

for any type of partite systems: (1) definition of the systems and the amalgamation,

(2) a partite lemma, and (3) a partite construction. A generalization of the Bipartite

Lemma to ordered hypergraphs is presented here.

Let (H,≤) be an ordered hypergraph. Then for two disjoint sets X,Y ⊆ V (H),

write X < Y if for all x ∈ X and all y ∈ Y , x < y. For a ∈ Z+, (H,≤) is a-partite

iff there exists a partition V (H) = V1∪· · ·∪Va such that V1 < · · · < Va, and for any

edge e ∈ E(H), there exists i, j ∈ [1, a], i 6= j, such that e ∩ Vi 6= ∅ and e ∩ Vj 6= ∅.

An a-partite ordered hypergraph (H,≤) with partition V (H) = V1 ∪ · · · ∪ Va is

transversal if for all i ∈ [1, a], |Vi| = 1.

Let a ∈ Z+. Two a-partite ordered hypergraphs (G,≤) and (H,≤) with partitions

V (G) = V1 ∪ · · · ∪ Va and V (H) = X1 ∪ · · · ∪Xa are said to be partite isomorphic if

there exists an isomorphism f between G and H that is order preserving, and has

the property that for all i ∈ [1, a], f(Vi) = Xi. The a-partite ordered hypergraph

(G,≤1) is said to be a partite ordered induced subhypergraph of (H,≤2) if G ¹ H,

for every x, y ∈ V (G), x ≤1 y iff x ≤2 y, and if for all i ∈ [1, a], Vi ⊆ Xi. The set of
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partite ordered induced subhypergraphs of (G,≤1) isomorphic to (H,≤2) is denoted

(
G,≤1

H,≤2

)
part

.

For a, r ∈ Z+, and a-partite ordered hypergraphs (F,≤), (G,≤), and (H,≤), write

(F,≤)
ind−→part (G,≤)(H,≤)

r

if for every ∆ :
(

F,≤
H,≤

)
part

→ [1, r], there exists (G′,≤) ∈ (
F,≤
G,≤

)
part

such that
(

G′,≤
H,≤

)
part

is monochromatic under ∆.

First, a specific case of the partite lemma (when H is complete) is proved.

Theorem 5.8.4 (Nešetřil and Rödl, 1989 [114]). Let r, a ∈ Z+, and let (G,≤) and

(H,≤) be a-partite ordered hypergraphs. Moreover, let H be transversal in G and

complete. Then there exists an a-partite ordered hypergraph (F,≤) such that

(F,≤)
ind−→part (G,≤)(H,≤)

r .

Proof. (as given in [68]) Let H = (Y1 ∪ · · · ∪ Ya,H), G = (X1 ∪ · · · ∪ Xa,G), H

transversal and complete. Let Y =
⋃a

i=1 Yi and X =
⋃a

i=1 Xi.

First note that since H is both complete and transversal, for any a-partite hyper-

graph F , there is a one-to-one correspondence between
(

F
H

)
part

and
(

F,≤
H,≤

)
part

.

If there are vertices of G not contained in some copy of H in
(

G
H

)
part

, and if for

G∗ = G[{v ∈ H ′ : H ′ ∈ (
G
H

)
part
}] an ordered hypergraph (F ∗,≤) is found such
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that (F ∗,≤)
ind−→part (G∗,≤)

(H,≤)
r , then each copy of G∗ in F ∗ can be independently

enlarged to a copy of G to form a graph F such that (F,≤)
ind−→part (G,≤)

(H,≤)
r ).

Therefore, without loss of generality, assume that each vertex of G is contained in

some copy of H in
(

G
H

)
part

.

Let t =
∣∣∣
(

G
H

)
part

∣∣∣ and let N = HJ(t, 1, r), the Hales-Jewett number (defined in

Theorem 5.6.1). Let G ′ be the set of edges in G that are contained in some partite

copy of (H,≤) in
(

G
H

)
part

(that is, G ′ = {e ∈ E(H ′) : H ′ ∈ (
G
H

)
part
}), and let

G ′′ = G \ G ′.

Recall that for any S, and integer k, Sk denotes the direct product of S with itself

k times. For all i ∈ [1, a], define Zi = XN
i . That is, each element v ∈ Zi is of the

form

v = (v1, . . . , vN) : ∀j ∈ [1, N ], vj ∈ Xi.

Let Z =
⋃a

i=1 Zi. For all j ∈ [1, N ], define a projection πj : Z → X defined by

πj : (v1, . . . , vN) 7→ vj.

Then for all j ∈ [1, N ], and for all i ∈ [1, a], πj(Zi) = Xi (πj preserves parts), and

πj is onto. For any Γ ⊆ Z, let πj(Γ) = {πj(v) : v ∈ Γ}.

Define the edge set F as follows: for Γ ⊆ Z, Γ ∈ F iff one of the following condition

is satisfied: (a) for all j ∈ [1, N ], πj(Γ) ∈ G ′, or (b) there exists J ⊆ [1, N ] and

B ∈ G ′′ such that for all j ∈ J , πj(Γ) = B, and for all j 6∈ J , πj(Γ) ∈ G ′.
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Notice that if every edge of G is a member of some partite copy of H, then G ′′ is

empty, and (b) never occurs. Finally, let F = (Z1 ∪ · · · ∪ Za,F), and order the

vertices of F lexicographically with respect to the ordering of V (G). It suffices to

prove that (F,≤)
ind−→part (G,≤)

(H,≤)
r .

Let ∆ :
(

F
H

)
part

→ [1, r]. Suppose H ′ ∈ (
F
H

)
part

and Y ′ = V (H ′). Then for every

e ⊆ Y ′, it follows that e is an edge in F (since H is complete and transversal) and

therefore for every j ∈ [1, N ], πj(e) is an edge in G (by the definition of the edges

in F ). Therefore for every j ∈ [1, N ], πj(Y
′) induces a (partite) copy of H in G.

Similarly, if Y ∗ ∈ [Z]a is such that for every j ∈ [1, N ], πj(Y
∗) induces a (partite)

copy of H in G, then for every e ⊆ πj(Y
∗), e ∈ G ′, and therefore by (a), Y ∗ induces

a (partite) copy of H in F .

Recall that for any set A, and any n,m ∈ Z+, [A]
(

n
m

)
denotes the set of m-parameter

words of length n over the alphabet A (see Section 5.6).

For Y ′ ∈ [Z]a, the subgraph of F induced by Y ′ satisfies

F [Y ′] ∈
(

F

H

)

part

iff ∀j ∈ [1, N ], (G[πj(Y
′)],≤) ∈

(
G

H

)

part

iff (G[π1(Y
′)],≤), · · · (G[πN(Y ′)],≤) ∈

[(
G

H

)

part

] (
N

0

)
.

Enumerate
(

G
H

)
part

= {H1, . . . , Ht}.
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Define ∆′ :
[(

G
H

)
part

] (
N
0

) → [1, r] by (for H ′ ∈ (
F
H

)
part

)

∆′( (G[π1(V (H ′))],≤), (G[π2(V (H ′))],≤), . . . , (G[πN(V (H ′))],≤) ) = ∆(H ′).

By the choice if N , there exists h ∈
[(

G
H

)
part

] (
N
1

)
such that ∆′ is constant on sp(h).

For each f ∈
[(

G
H

)
part

] (
N
0

)
, define

φ(f) =

{
v ∈ Z : ∀j ∈ [1, N ], πj(v) ∈ f(j) ∈

(
G

H

)

part

}
.

For g ∈
[(

G,≤
H,≤

)
part

] (
N
1

)
, let φ(g) =

⋃
f∈sp(g) φ(f).

To finish proving Theorem 5.8.4, it suffices to prove the following claim:

Claim. The set φ(h) ⊆ Z induces a monochromatic copy of (G,≤) (under ∆) in

(F,≤).

Proof of Claim. Define the function Ψ : X → φ(h) as follows: fix v ∈ X and

assume that for some k ∈ [1, a], v ∈ Xk. For each j ∈ [1, N ], define

vj =





v if h(j) = λ, or

the vertex of h(j) in Xk if h(j) 6= λ.

(note that this definition is well defined since H is transversal). Then let Ψ(v) =

(v1, . . . , vN). The function Ψ is then an order preserving isomorphism between

(G,≤) and an induced subgraph of (F,≤), with each copy of (H,≤) inside the same

colour. This proves the claim, and the theorem.
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The more general version of the partite lemma can now be stated and proved. The

proof of Theorem 5.8.5 presented below is as given in [68, p. 65].

Theorem 5.8.5 (The Partite Lemma, Nešetřil and Rödl, 1989 [114]). Fix r, a ∈ Z+,

and let (G,≤) and (H,≤) be a-partite ordered hypergraphs. Moreover, let H be

transversal in G, but not necessarily complete. Then there exists an a-partite ordered

hypergraph (F,≤) such that

F
ind−→part (G,≤)(H,≤)

r .

Proof. If H is complete, the corollary is exactly Theorem 5.8.5. If H is not

complete, let H ′ be the complete (transversal) a-partite hypergraph on V (H) (call

the extra edges in H ′ ‘dummy’ edges). Let G = (X1 ∪ · · · ∪ Xa, E1), and let X =

⋃a
i=1 Xi. Define a set E2 ⊆ P(X) as follows: for any e ∈ P(X) such that ∀i ∈ [1, a]

|e ∩Xi| ≤ 1,

e ∈ E2 iff





e ∈ E(G) and ∃e′ ∈ E(H) s.t. ∀i ∈ [1, a]Vi ∩ e′ iff Vi ∩ e

e 6∈ E(G) and 6 ∃e′ ∈ E(H) s.t. ∀i ∈ [1, a]Vi ∩ e′ iff Vi ∩ e.

Define G′ = (X1 ∪ · · · ∪Xa, E2) (see Figure 5.11 for an example of the construction

of H ′ and G′). By Theorem 5.8.5, there exists an ordered hypergraph (F ′,≤) such

that (F ′,≤)
ind−→part (G′,≤)

(H′,≤)
r . By the construction of E2, there is a one-to-one

correspondence between the (H ′,≤) partite subgraphs of (G′,≤) and the (H,≤)

partite subgraphs of (G,≤). Therefore, it is well defined to remove the ‘dummy’
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Figure 5.11: Example H, H ′, G, and G′

edges from each copy of H ′ in F ′. Let F be the hypergraph formed by removing the

‘dummy’ edges from each copy of H ′ in F ′. Then (F,≤)
ind−→part (G,≤)

(H,≤)
r .



Chapter 6

Extremal graph theory

In proving results in graph Ramsey theory, other results known as “density results”

are sometimes useful. Density results involve the existence of sufficiently many

“objects” to force some “property”. For example, a traditional density theorem for

graphs is Mantel’s theorem: every graph on n vertices with at least
⌊

n2

4

⌋
+ 1 edges

contains a triangle.

6.1 Extremal Numbers

Given n ∈ Z+, and any graph G, the extremal number for n and G, denoted

ex(n,G), is the maximum number of edges a graph on n vertices can contain

126
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without containing a subgraph isomorphic to G. For example, if V (G) > n then

ex(n,G) =
(

n
2

)
. The extremal numbers have been the subject of a lot of research

(see e.g. [9]).

Density results often yield related Ramsey results. For example, consider the fol-

lowing proposition.

Proposition 6.1.1. If n and r are positive integers, and G is a graph such that

1
r

(
n
2

)
> ex(n,G), then R(G; r) ≤ n.

Proof. Let n, r ∈ Z+ be such that 1
r

(
n
2

)
> ex(n,G), and let ∆ : E(Kn) → [1, r].

Since the average number of edges in any colour class is 1
r

(
n
2

)
> ex(n, G), there

exists at least one colour class, say in colour c, with more than ex(n,G) edges. This

colour class then has more than ex(n,G) edges, and therefore there is a copy of G

monochromatic in the c-th colour.

Proposition 6.1.1 shows that as soon as one has an upper bound on the extremal

numbers, there is an associated Ramsey result.
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6.2 Turán’s Theorem

By Mantel’s theorem (mentioned above), ex(n,K3) ≤ n2

4
. As well, the graph

Kbn
2 c,dn

2 e contains no triangles and, if n is even, has
⌊

n2

4

⌋
edges, which shows

that ex(n,K3) ≥
⌊

n2

4

⌋
. It then follows that ex(n,K3) =

⌊
n2

4

⌋
. For all n, k ∈ Z+,

Turán’s Theorem (below) produces the value of, ex(n,Kk).

Let n, k ∈ Z+. The k-partite Turán graph on n vertices , denoted T (n, k), is the

complete k-partite graph with partite sets V1, . . . , Vk, and on n vertices such that the

partite sets are as close as possible in size; that is, for all i, j ∈ [1, k], ||Vi|−|Vk|| ≤ 1.

Let q, r ∈ Z+ be such that r ∈ [0, k− 1], and n = qk + r. Then r of the partite sets

have q + 1 vertices, and the remaining have q vertices (see Figure 6.1). Note that

there is no copy of Kk+1 in T (n, k). Let t(n, k) = |E(T (n, k))|.

Figure 6.1: The Turán graph T (n, k)

Theorem 6.2.1 (Turán’s theorem, 1941/1954 [140, 141]). Let G be a graph on n

vertices. If |E(G)| > t(n, k), then there is a subgraph of G isomorphic to Kk+1.
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Furthermore, T (n, k) is the unique (up to isomorphism) Kk+1-free graph with n

vertices and t(n, k) edges.

The proof of Turán’s theorem is omitted. There are a number of known proofs of

Turán’s theorem (see, e.g., [3, 7, 79]).

Lemma 6.2.2. For n, k ∈ Z+, and q, r ∈ Z+ such that r ∈ [0, k−1] and n = qk+r,

t(n, k) =
1

2
(k)q(k − 1)q +

(
r

2

)
+ r(k − 1)q.

Proof. The first term 1
2
(k)q(k − 1)q =

(
k
2

)
q2 counts the edges fully within the

bottom section of the graph. The second term
(

r
2

)
counts edges just in the top row.

The third term r(k − 1)q counts edges connecting the top row with the remainder

of the graph.

The following proposition is used in Chapter 7.

Proposition 6.2.3. For all n, k ∈ Z+,

t(n, k − 1) ≤ 1

2
n2

(
k − 2

k − 1

)
.

Proof. Let q, r ∈ Z+, r ∈ [0, k − 2], be such that n = q(k − 1) + r. Then

t(n, k − 1) =
1

2
(k − 1)q(k − 2)q +

(
r

2

)
+ r(k − 2)q (by Lemma 6.2.2)

=
1

2
(k − 1)

(
n− r

k − 1

)
(k − 2)

(
n− r

k − 1

)
+

(
r

2

)
+ r(k − 2)

(
n− r

k − 1

)
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=
1

2
(n− r)2

(
k − 2

k − 1

)
+

r

2

(
2(n− r)

(
k − 2

k − 1

)
+ r − 1

)

=

(
1

2
n2 +

−2nr + r2

2

)(
k − 2

k − 1

)
+

r

2

(
2(n− r)

(
k − 2

k − 1

)
+ r − 1

)

=
1

2
n2

(
k − 2

k − 1

)
+

r

2

(
−r

(
k − 2

k − 1

)
+ r − 1

)

=
1

2
n2

(
k − 2

k − 1

)
+

r

2

(
r

(
1− k − 2

k − 1

)
− 1

)

=
1

2
n2

(
k − 2

k − 1

)
+

r

2

(
r

(
1

k − 1

)
− 1

)

≤ 1

2
n2

(
k − 2

k − 1

)
+

r

2

(
k − 2

k − 1
− 1

)
(since r ≤ k − 2)

≤ 1

2
n2

(
k − 2

k − 1

)
(since

k − 2

k − 1
< 1).

6.3 The symmetric hypergraph theorem

The theorem known as the Symmetric Hypergraph theorem seems to have been

first published by Graham, Rothschild, and Spencer [65, pp. 99–103]. The authors

also use the Symmetric Hypergraph theorem to produce a relationship between the

graph Ramsey numbers R(G; K2; r) and the extremal numbers ex(n,G). According

to the authors [65, p. 109], both the theorem and this application have been part

of the “folk literature” [65, p. 110] for some time.

All theorems in this section, unless otherwise stated, are found in [65].
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6.3.1 Preliminaries

For a hypergraph H, an automorphism of H is an isomorphism between H and

itself. The set of all automorphisms on H forms a group under composition, and

is denoted Aut(H). A group G acting on a set X is transitive iff for any elements

u, v ∈ X, there exists a σ ∈ G such that σ(u) = v. A hypergraph H is symmetric

(or vertex-symmetric) if Aut(H) is transitive. The following lemma is used to prove

the Symmetric Hypergraph theorem.

Lemma 6.3.1. Let H = (S, E) be a symmetric hypergraph, and let T and U be

subsets of S. There exists σ ∈ Aut(H) such that

|σ(T ) ∩ U | ≥ |T ||U |
|S| .

Proof. Let G = Aut(H). Count the set of ordered triples

P = {(σ, t, u) : σ ∈ G, t ∈ T, u ∈ U, σ(t) = u}

in two ways.

To count the triples in P in the first way, for any s ∈ S, t ∈ T , define Xt,s = {σ ∈

G : σ(t) = s}. Let t ∈ T , a, b ∈ S. Since G is transitive, there exists φ ∈ G such

that φ(a) = b, and therefore,

φ ◦Xt,a = {φ ◦ σ : σ ∈ Xt,a},
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= {φ ◦ σ : σ ∈ G, σ(t) = a},

⊆ {σ′ ∈ G : σ′(t) = b},

= Xt,b.

Consider the function ft : Xt,a → φ ◦ Xt,a where ft(σ) = φ ◦ σ. Assume for some

σ1, σ2 ∈ G, that ft(σ1) = ft(σ2). Then,

ft(σ1) = ft(σ2)

iff φ ◦ σ1 = φ ◦ σ2,

iff φ−1 ◦ φ ◦ σ1 = φ−1 ◦ φ ◦ σ2, (φ−1 exists since G is a group)

iff σ1 = σ2.

Therefore ft is one-to-one, and thus |Xt,a| ≤ |Xt,b|. By the same logic, replacing

a and b, it follows that |Xt,b| ≤ |Xt,a|. Therefore |Xt,a| = |Xt,b|. Since a, b were

arbitrary elements of S, and since for any t ∈ T , a, b ∈ S, Xt,a ∩Xt,b = ∅, it follows

that for any s ∈ S,

|Xt,s| = |G|
|S| . (6.1)

Therefore,

|P | = |{(σ, t, u) : σ ∈ G, t ∈ T, u ∈ U, σ(t) = u}|

=
∑
t∈T

∑
u∈U

|{σ ∈ G : σ(t) = u}|
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=
∑
t∈T

∑
u∈U

|Xt,u|

=
∑
t∈T

∑
u∈U

|G|
|S| (by equation (6.1))

=
|T ||U ||G|
|S| . (6.2)

To count the triples in P in the second way, for each σ ∈ G, let

Yσ = {(t, u) : t ∈ T, u ∈ U, σ(t) = u}.

Then,

|P | = |{(σ, t, u) : σ ∈ G, t ∈ T, u ∈ U, σ(t) = u}|

=
∑
σ∈G

|{(t, u) : t ∈ T, u ∈ U, σ(t) = u}|

=
∑
σ∈G

|Yσ|.

The average cardinality of the Yσ sets is

1

|G|
∑
σ∈G

|Yσ|.

So there must be at least one element in G, say σ0, so that Yσ0 has at least

1
|G|

∑
σ∈G |Yσ| elements. Therefore, by equation (6.2),

|Yσ0| ≥
1

|G|
∑
σ∈G

|Yσ| = |P |
|G| =

|T ||U |
|S| .

It now suffices to show that |Yσ0| ≤ |σ0(T ) ∩ U |. Let π2 : Yσ0 → σ0(T ) ∩ U be the

function projecting each pair (t, u) onto the second coordinate u, that is, π(t, u) = u.
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Since σ0 is one-to-one, the function π is also one-to-one, and thus |Yσ0| ≤ |σ0(T )∩U |,

and so,

|T ||U |
|S| ≤ |Yσ0| ≤ |σ0(T ) ∩ U |.

6.3.2 Statement and proof

Recall that for any graph G, α(G) is the independence number of G, that is, the

maximum number of vertices containing no edge in G.

Theorem 6.3.2 (Symmetric Hypergraph theorem). Let H = (S, E) be a symmetric

hypergraph, E 6= ∅, and let m = |S| ≥ 1. Then,

m

(
1− α(H)

m

)χ(H)−1

≥ 1,

and therefore

χ(H) ≤ 1 +
ln m

− ln
(
1− α(H)

m

) .

Proof. Let T ⊆ S be an independent set such that |T | = α(H). Fix r ∈ Z+ such

that

m

(
1− α(H)

m

)r

< 1 and m

(
1− α(H)

m

)r−1

≥ 1.

Inductively define U1, . . . , Ur ⊆ S and functions σ1, . . . , σr ∈ Aut(H) as follows: let

σ1 be the identity automorphism on H, and define U1 = S \ T .
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For the inductive step in the definition, let i ∈ [2, r], and assume that Ui−1 and σi−1

have been defined. By Lemma 6.3.1, there exists σi ∈ Aut(H) such that

|σi(T ) ∩ Ui−1| ≥ |T ||Ui−1|
m

=
α(H)

m
|Ui−1|.

Finally, define Ui = Ui−1 \ σi(T ). This completes the inductive definition.

Note that for all i ∈ [2, r],

|Ui| = |Ui−1| − |σi(T ) ∩ Ui−1| ≤ |Ui−1| − α(H)

m
|Ui−1| = |Ui−1|

(
1− α(H)

m

)
.

Therefore,

|Ur| ≤ |Ur−1|
(

1− α(H)

m

)

≤ |Ur−2|
(

1− α(H)

m

)2

...

≤ |U1|
(

1− α(H)

m

)r−1

= (m− α(H))

(
1− α(H)

m

)r−1

= m

(
1− α(H)

m

)r

< 1.

Thus |Ur| < 1, and so necessarily Ur = ∅. Hence,

S = σ1(T ) ∪ · · · ∪ σr(T ) (6.3)
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(not necessarily disjoint unions). Since each σi is an automorphism, and T is inde-

pendent, each σi(T ) is an independent set. Let

T1 = σ1(T ),

T2 = σ2(T ) \ T1,

T3 = σ3(T ) \ (T1 ∪ T2),

...
...

Tr = σr(T ) \ (T1 ∪ · · · ∪ Tr−1).

Then by construction, for any i, j ∈ [1, r], i 6= j, Ti ∩ Tj = ∅, and by equation (6.3),

S = T1 ∪ T2 ∪ · · · ∪ Tr.

The Ti’s form an r-colouring of S such that no edge is monochromatic, and therefore

χ(H) ≤ r, from which it follows that

m

(
1− α(H)

m

)χ(H)−1

≥ m

(
1− α(H)

m

)r−1

≥ 1.

The upper bound on χ(H) is proved by the following straightforward algebra:

m

(
1− α(H)

m

)χ(H)−1

≥ 1

ln

[
m

(
1− α(H)

m

)χ(H)−1
]

≥ 0

ln m + ln

(
1− α(H)

m

)χ(H)−1

≥ 0

(χ(H)− 1) ln

(
1− α(H)

m

)
≥ − ln m
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χ(H) ln

(
1− α(H)

m

)
− ln

(
1− α(H)

m

)
≥ − ln m

χ(H) ln

(
1− α(H)

m

)
≥ ln

(
1− α(H)

m

)
− ln m

χ(H) ≤
ln

(
1− α(H)

m

)
− ln m

ln
(
1− α(H)

m

)

χ(H) ≤ 1 +
ln m

− ln
(
1− α(H)

m

) .

The following lemma is a standard lemma in graph theory (see, e.g., [7, p. 147]).

Lemma 6.3.3. Given any hypergraph H = (S, E), χ(H)α(H) ≥ |V (H)|.

Proof. Colour the vertices of H with χ(H) colours so that H has no monochromatic

edge. Let C1, C2, ..., Cχ(H) be the colour classes formed by this colouring. Then

|V (H)| =
χ(H)∑
i=1

|Ci| ≤
χ(H)∑
i=1

α(H) = χ(H)α(H).

Corollary 6.3.4. For H = (S, E), a symmetric hypergraph with m = |S|, and

E 6= ∅,
m

α(H)
≤ χ(H) < 1 +

m

α(H)
ln m.

[The upper bound in Corollary 6.3.4 is slightly different than that given in the source

(equation (26), p. 100).]

Proof. The lower bound is exactly Lemma 6.3.3. The upper bound is an estimation

of the upper bound given in the Symmetric Hypergraph theorem. Recall that a
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consequence of the fact that for all x ∈ (0, 1), e−x > 1− x is that for x ∈ (0, 1),

x < − ln(1− x). (6.4)

Therefore,

χ(H) ≤ 1 +
ln m

− ln(1− α(H)
m

)
(by Theorem 6.3.2),

< 1 +
ln m(
α(H)

m

) (by equation (6.4) with x = α(H)
m

),

= 1 +
m

α(H)
ln m.

6.3.3 Application to graph Ramsey numbers

What follows is a connection between the graph Ramsey numbers and the extremal

numbers.

LetH = {Hm}∞m=1 be a sequence of symmetric hypergraphs Hm = (Sm, Em) with the

properties that for all m ∈ Z+, Em 6= ∅, and |Sm|
α(Hm)

is a strictly increasing function

in m. Let f(m) = |Sm|
α(Hm)

, and let g(m) = 1+ f(m) ln |Sm|. Then by Corollary 6.3.4,

for all m ∈ Z+,

f(m) ≤ χ(Hm) < g(m). (6.5)

Lemma 6.3.5. Let H, f, g be as above, and let t ∈ Z+. Then there exists a least
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M = RH(t) satisfying

g−1(t) < RH(t) ≤ 1 + f−1(t)

such that for all m ≥ M , χ(Hm) > t.

Proof. (Upper bound) Let x ≥ f−1(t) + 1. Then

χ(Hx) ≥ f(x) (by the left inequality in (6.5))

≥ f(f−1(t) + 1) (since f is increasing)

> f(f−1(t)) (since f is strictly increasing)

= t.

Therefore RH(t) ≤ f−1(t) + 1.

(Lower bound) Let M = RH(t). Then

g(M) > χ(HM) (by the upper bound in (6.5))

> t (by the definition of RH(t)).

Since f is increasing, g is also increasing, and therefore g(M) > t iff RH(t) = M >

g−1(t).

Let G be a graph. For each m ∈ Z+, let Sm = E(Km), and

Em =

{
E(G′) : G′ ∈

(
Km

G

)}
.
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Let H = {Hm}∞m=1 be the sequence of hypergraphs Hm = (Sm, Em). Then α(Hm) =

ex(m,G).

Example. Let G = K3, and m = 4. Then the vertices in H4 are edges of K4, with

edges copies of K3 inside the K4. If the vertices of the K4 were {a, b, c, d}, then

S4 = {{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}},

E4 = {{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}}.

Theorem 6.3.6. For any t ∈ Z+, RH(t) = R(G; K2; t).

Proof. The proof is just a matter of unravelling the definitions.

RH(t) = the least M s.t. ∀m ≥ M , χ(Hm) > t

= the least M s.t. ∀m ≥ M , (and a hyperedge em), Hm → (em)K1
t

= the least M s.t. ∀m ≥ M , Km → (G)K2
t . (by the definition of H)

= R(G; K2; t).

Corollary 6.3.7. Fix a graph G. If

f(m) =

(
m
2

)

ex(m,G)
and g(m) = 1 + f(m) ln

(
m

2

)

are strictly increasing functions in m, then g−1(t) < R(G; K2; t) ≤ f−1(t) + 1.

For example, when G = C4, it is known (see, e.g., [13] and [47]) that for some

constant c1,

ex(m,C4) ∼ c1n
3/2.
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Proposition 6.3.8 (Graham, Rothschild and Spencer, 1990 [65]). There exist con-

stants c4, c5 such that for all t ∈ Z+, t ≥ 2,

c5t
2

(ln t)2
(1 + o(1)) < R(C4; K2; t) ≤ c4t

2.

Proof. (as presented in [65]) Since ex(m, C4) ∼ c1n
3/2, for some constants c2 and

c3,

f(m) =

(
m
2

)

ex(m,G)
= c2m

1/2(1 + o(1))

and

g(m) = 1 + f(m) ln

(
m

2

)
= c3m

1/2 ln m(1 + o(1))

Both f and g are strictly increasing functions, and so the bounds in Corollary 6.3.7

hold. The inverse of f is, for some constant c4, f−1(t) = c4t
2, which together with

Corollary 6.3.7, proves the lower bound. Finding the inverse of g is not as easy. Let

W (y) be the inverse of the function y = xex, i.e.,

y = xex ⇐⇒ x = W (y).

The function W (y) is known as the Lambert W function (see, e.g., [31]).

Claim 1. g−1(y) = e
2W ( y

2c3
)
.

Proof of claim 1. The proof of Claim 1 is by the following algebra:

y = c3

√
m ln m,
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= c3e
ln
√

m ln m,

1

2
y = c3e

ln
√

m

(
1

2
ln m

)
,

= c3e
ln
√

m(ln
√

m),

1

2c3

y = ueu (letting u = ln
√

m),

W

(
y

2c3

)
= u,

= ln
√

m,

e
W
�

y
2c3

�
=

√
m,

e
2W
�

y
2c3

�
= m,

which proves the claim.

To prove the upper bound in Proposition 6.3.8, by Corollary 6.3.7, it now suffices

to prove the following claim.

Claim 2. For all y ∈ R+, W (y) = (1 + o(1))(ln y − ln ln y), and therefore for some

constant c5,

g−1(t) = (1 + o(1))
c5t

2

(ln t)2
.

Proof of claim 2. Let φ be the real-valued function φ : x 7→ xex. Then

φ−1 = W (y) = (1 + o(1))(ln y − ln ln y),

iff φ ((1 + o(1))(ln y − ln ln y)) = (1 + o(1))y,

iff (1 + o(1))(ln y − ln ln y)e(1+o(1))(ln y−ln ln y) = (1 + o(1))y,
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iff (1 + o(1))(ln y − ln ln y)y
1

ln y
= (1 + o(1))y,

iff (1 + o(1))

(
1− ln ln y

ln y

)
y = (1 + o(1))y,

which holds. Therefore

W (y) = (1 + o(1))(ln y − ln ln y). (6.6)

Then the closed form for g−1(y) is found as follows:

g−1(y) = (1 + o(1))e
2W
�

y
2c3

�
(by Claim 1),

= (1 + o(1))e
2
�
ln y

2c3
−ln ln y

2c3

�
(by equation (6.6)),

= (1 + o(1))

(
y

2c3

)2 (
ln

(
y

2c3

))−2

,

= (1 + o(1))


 y

2c3 ln
(

y
2c3

)



2

,

= (1 + o(1))c5

(
y

ln y

)2

,

which proves Claim 2, and the proposition.



Chapter 7

Linear Ramsey theory

7.1 Introduction

The diagonal graph Ramsey numbers for complete graphs grow exponentially in

terms of the number of vertices, but not all graph Ramsey numbers grow nearly

this fast. For instance, a consequence of Theorem 4.4.2 is that the graph Ramsey

numbers for trees are, at worst, quadratic in the number of vertices. A family F of

graphs is linear Ramsey iff there exists a constant c = c(F) such that for all G ∈ F ,

R(G,G) ≤ c|V (G)|.

In one of the earliest papers on the topic of Linear Ramsey theory, Burr and Erdős

144
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presented the following two examples of linear Ramsey families.

Theorem 7.1.1 (Burr and Erdős, 1973 [16]). For any graph G, the family

F = {G, 2G, 3G, . . .}

is linear Ramsey with c(F) = R(G,G) + 2.

Proof. Fix a graph G, and let F = {G, 2G, 3G, . . .}. Set c = c(F) = R(G,G) + 2.

Then, for any positive integer k,

R(kG, kG) ≤ R(G,G) + (k − 1)|V (G)|+ (k − 1)|V (G)| (by Theorem 4.4.3)

=

(
R(G,G)

k|V (G)| + 2− 2

k

)
k|V (G)|

< (R(G,G) + 2)|V (kG)|

= c|V (kG)|.

Theorem 7.1.2 (Burr and Erdős, 1973 [16]). The family F = {4K1, 4
2K2, 4

3K3, . . .}

is linear Ramsey with c(F) = 3.

Proof. By Corollary 3.2.2 (the upper bound on the traditional Ramsey numbers),

for any i ∈ Z+, R(Ki, Ki) ≤ 4i. Therefore for any i ∈ Z+,

R(4iKi, 4
iKi) ≤ R(Ki, Ki) + (4i − 1)i + (4i − 1)i (by Theorem 4.4.3)

≤ 4i + 2i(4i − 1)

=

(
1

i
+ 2− 2

4i

)
i4i

< 3|V (4iKi)|.
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7.2 Bounded maximum degree implies linear

The main result of this section is a result of Chvátal, Rödl, Szemerédi and Trotter,

who proved in 1983 [28] that for any d ∈ Z+, the family of all graphs with max

degree less than or equal to d is linear Ramsey. The proof presented here is found

in Diestel’s book [33], which is based on the original proof by Chvátal et al. For

this proof, three theorems in graph theory are used: Szemerédi’s Regularity lemma,

Turán’s theorem (given already as Theorem 6.2.1), and the familiar finite version

of Ramsey’s theorem (Theorem 1.2.3).

Throughout this section, G and H are graphs, and ε > 0.

7.2.1 Szemerédi’s Regularity lemma

Let X,Y ⊆ V (G), X ∩ Y = ∅. Let EG(X,Y ) denote the set of edges of G between

X and Y , i.e.,

EG(X,Y ) = E(G) ∩ {{x, y} : x ∈ X, y ∈ Y }.

The edge density between X and Y is

ρG(X, Y ) =
|EG(X,Y )|
|X||Y |

(when it is clear which graph the density is in, the G may be omitted). For ε > 0,

the pair (X, Y ) is said to be ε-regular iff for all A ⊆ X, B ⊆ Y satisfying |A| ≥ ε|X|,
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|B| ≥ ε|Y |,

|ρ(A,B)− ρ(X,Y )| ≤ ε.

A partition V (G) = V0∪V1∪· · ·∪Vk is ε-regular if 0 ≤ |V0| ≤ ε|V (G)|, |V1| = · · · =

|Vk|, and at most ε
(

k
2

)
pairs of the form (Vi, Vj), 1 ≤ i < j ≤ k, are not ε-regular.

A graph G is ε-regular if it admits an ε-regular partition.

Lemma 7.2.1. Let ε0, ε1 be such that 0 < ε0 ≤ ε1 ≤ 1. If P is an ε0-regular

partition V (G) = V0 ∪ V1 ∪ · · · ∪ Vk, then P is also an ε1-regular partition of V (G).

Therefore, every ε0-regular graph is also ε1-regular.

Proof. Let P be an ε0-regular partition V (G) = V0 ∪ V1 ∪ · · · ∪ Vk. Let i, j ∈ Z+,

i < j, be such that (Vi, Vj) is ε0-regular. Let A ⊆ Vi and B ⊆ Vj satisfy |A| ≥ ε1|Vi|,

|B| ≥ ε1|Vj|. Then |A| ≥ ε1|Vi| ≥ ε0|Vi|, and |B| ≥ ε1|Vj| ≥ ε0|Vj|, and since (Vi, Vj)

is ε0-regular,

|ρ(A,B)− ρ(Vi, Vj)| ≤ ε0 ≤ ε1,

which shows (Vi, Vj) is ε1-regular. Therefore every ε0-regular pair (Vi, Vj) is also

ε1-regular, and each pair (Vi, Vj) that is not ε1-regular is also not ε0-regular. Thus

the number of pairs (Vi, Vj) that are not ε1-regular is at most the number that are

at not ε0-regular, which is at most ε0

(
k
2

) ≤ ε1

(
k
2

)
.

Note that ε is used a number of times in the above definitions, and so the definitions

could have been made using “different ε’s”. One could, for example, define the pair
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(X,Y ) to be (ε1, ε2)-regular iff for all A ⊆ X, B ⊆ Y satisfying |A| ≥ ε1|X|

B ≥ ε1|Y |,

|ρ(A,B)− ρ(X, Y )| ≤ ε2,

and one could define a partition V (G) = V0∪V1∪· · ·∪Vk to be (ε1, ε2, ε3, ε4)-regular

if 0 ≤ |V0| ≤ ε3|V (G)|, |V1| = · · · = |Vk|, and at most ε4-regular pairs of the form

(Vi, Vj), 1 ≤ i < j ≤ k are not (ε1, ε2)-regular. However, for the purposes of this

work, all the ε’s are taken to be the same.

Lemma 7.2.2. For any A,B ⊆ V (G) with A ∩B = ∅, ρG(A,B) = 1− ρG(A,B).

Proof. By the definition of ρG(A,B),

ρG(A,B) =
|EG(A,B)|
|A||B|

=
|A||B| − |EG(A,B)|

|A||B|
= 1− |EG(A,B)|

|A||B|
= 1− ρG(A,B).

Lemma 7.2.3. For any disjoint sets V1, V2 ⊆ V (G) such that (V1, V2) is ε-regular

in G, the pair (V1, V2) is also ε-regular in G. Therefore, if G is ε-regular, admitting

an ε-regular partition P , then G is also ε-regular, witnessed by the same partition.

Proof. Let V1, V2 ⊆ V (G) be disjoint sets such that (V1, V2) is an ε-regular pair in

G. Let A ⊆ Vi, B ⊆ Vj with |A| ≥ ε|Vi|, |B| ≥ ε|Vj|. Then

|ρG(A,B)− ρG(Vi, Vj)| = |(1− ρG(A,B))− (1− ρG(Vi, Vj))| (by Lemma 7.2.2)
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= |ρG(Vi, Vj)− ρG(A,B)|

≤ ε (since (Vi, Vj) is ε-regular in G).

Lemma 7.2.4. Let G be a graph containing an ε-regular pair (A,B). Let d =

ρ(A,B), and let Y ⊆ B, |Y | ≥ ε|B|. Then more than (1− ε)|A| vertices in A have

at least (d− ε)|Y | neighbours in Y .

Proof. Let X be the set of vertices in A with fewer than (d− ε)|Y | neighbours in

Y . Then

ρ(X,Y )− d <
|X|(d− ε)|Y |

|X||Y | − d = −ε.

Therefore ρ(X, Y ) − ρ(A,B) < −ε. Since (A,B) is ε-regular, and |Y | ≥ ε|B|, if it

were the case that |X| ≥ ε|A|, then

|ρ(X, Y )− ρ(A, B)| ≤ ε,

which is not true. Therefore |X| < ε|A|.

Szemerédi published his “regularity lemma” in 1978 [138] after using a bipartite

version of the regularity lemma in order to prove a conjecture of Erdős and Turán

[49] relating to arithmetic progressions in the integers. For k, n ∈ Z+, let rk(n)

denote the greatest integer ` such that there exists 0 < a1 < a2 < . . . < a` ≤ n

such that {a1, . . . , a`} does not contain an arithmetic progression of k terms. The
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conjecture of Erdős and Turán [49], which Szemerédi [137] proved, was that for all

k ∈ Z+, rk(n) is o(n) (that is, limn→∞
rk(n)

n
= 0).

The regularity lemma has been restated in many different forms over the years, and

the following form is found in [33].

Lemma 7.2.5 (Szemerédi’s Regularity lemma). For every ε > 0, and m ∈ Z+, there

exists M = M(ε,m) ∈ Z+, such that for every graph G with at least m vertices, there

exists k ∈ [m,M ] such that G admits an ε-regular partition V (G) = V0∪V1∪· · ·∪Vk.

The proof of the regularity lemma is omitted, and may be found in, e.g., [7] and

[33]. The interested reader can see [84] and [85] for detailed surveys on applications

of Szemerédi’s Regularity lemma in graph theory.

7.2.2 Regularity graphs

For a graph G with ε-regular partition P : V (G) = V0 ∪ V1 ∪ · · · ∪ Vk, and d ∈ R,

0 ≤ d ≤ 1, the regularity graph for G (with partition P and parameter d), denoted

REGP (G; d), is the graph with vertex set {V1, . . . , Vk} and edge set

{{Vi, Vj} : (Vi, Vj) is ε-regular, and ρ(Vi, Vj) ≥ d}.

When it is clear which partition is used, REGP (G; d) may be written as sim-

ply REG(G; d). For any s ∈ Z+, let REGP
s (G; d) denote the graph formed from
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REGP (G; d) by replacing each vertex in REGP (G; d) with s independent vertices,

and each edge by a complete bipartite graph Ks,s.

The following Lemma proves a sufficient condition for a graph H with bounded max

degree to be found in an ε-regular graph G, which is used to prove the main result

that the set of graphs with bounded max degree is linear Ramsey.

Lemma 7.2.6. For all D ≥ 1, there exists ε0 = ε0(D) > 0, such that for any

graph G admitting an ε0-regular partition V (G) = V0 ∪ V1 ∪ · · · ∪ Vk, ` = |V1| =

· · · = |Vk|, any graph H with ∆(H) ≤ D, and for any positive integer s ≤ `
2D+1 , if

H ⊆ REGs(G; 1
2
), then H ⊆ G.

Proof. Let D ≥ 1. Choose ε0 > 0 small enough so that ε0 < 1
2
, and

(
1

2
− ε0

)D

−Dε0 ≥
(

1

2

)D+1

(such a choice is possible since as ε0 → 0,
(

1
2
− ε0

)D −Dε0 →
(

1
2

)D
).

Let G be an ε0-regular graph admitting the ε0-regular partition V (G) = V0 ∪ V1 ∪

· · · ∪ Vk. Let ` = |V1| = · · · = |Vk|, and let s ≤ `
2D+1 . Let H be any graph with

∆(H) ≤ D, and assume that H ⊆ REGs(G; 1
2
) (see Figure 7.1).

Note that H ⊆ REGs(G; 1
2
) implies that s > 0. Enumerate V (H) = {u1, . . . , uh}.

The graph H is embedded in G with the embedding defined inductively as follows.

Let σ : [1, h] → [1, k] be such that for all i ∈ [1, h], ui is in the set of s vertices in
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Figure 7.1: Definition of REG(G; 1
2
) and REGs(G; 1

2
)

REGs(G; 1
2
) that replaced Vσ(i) in REG(G; 1

2
).

For each i ∈ [1, h], let

Y 0
i = Vσ(i).

For any n ∈ [0, h], let Hn = H[{u1, . . . , un}], and let J(n) be the statement that

there exists an embedding f of Hn into G, and that for all i ∈ [1, h], the sets

Y n
i ⊆ Vσ(i) have been defined and satisfy

|Y n
i | ≥ `

(
1

2
− ε0

)degHn
(ui)

(note that H0 is accepted to be the null graph, the graph containing no vertices and

no edges). To prove Lemma 7.2.6, it suffices to show that J(h) holds.

Base Case: Since the null graph is (trivially) a subgraph of every graph, and since
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|Y 0
i | = |Vσ(i)| = `, the statement J(0) holds.

Inductive Step: Let m ∈ [0, h − 1], and assume that J(m) holds. Let f be an

embedding of Hm into G.

Then for all i ∈ [1, h],

|Y m
i | ≥ `

(
1

2
− ε0

)degHm
(ui)

(since J(m) holds)

≥ `

(
1

2
− ε0

)D

(since degHm
(ui) ≤ ∆(H) ≤ D)

= `

[(
1

2
− ε0

)D

−Dε0

]
+ `Dε0

≥ `
1

2D+1
+ `Dε0 (by the choice of ε0)

≥ s + `Dε0 (by definition of s). (7.1)

Let I = {i > m : {um+1, ui} ∈ E(H)}. For all i > m, i 6∈ I, let Y m+1
i = Y m

i . Fix

some i ∈ I. Then let

A = Vσ(m+1),

B = Vσ(i),

Y = Y m
i .

By equation (7.1), |Y | = |Y m
i | ≥ s + Dε0` > ε0`, and so Lemma 7.2.4 can be

applied to yield a set of more than (1− ε0)|A| vertices in A that each have at least

(1
2
− ε0)|Y | neighbours in Y .
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Since |I| ≤ D, applying Lemma 7.2.4 repeatedly (for each i ∈ I) implies the ex-

istence of a set of more than (1 − Dε0)|A| vertices in A (and thus more than

|Y m
m+1| −Dε0|A| vertices in Y m

m+1 ⊆ A) that each have at least (1
2
− ε0)|Y m

i | neigh-

bours in each Y m
i . Then since

|Y m
m+1| −Dε0|A| = |Y m

m+1| − `Dε0 ≥ s > 0 (by equation (7.1)),

there is at least one vertex vm+1 left in Y m
m+1 with the desired properties. Extend f

to f ∗ by defining f ∗(um+1) = vm+1.

Then for all i ∈ I, let Y m+1
i = Y m

i ∩NG(vm+1). Then

|Y m+1
i | ≥

(
1

2
− ε0

)
|Y m

i |

≥ `

(
1

2
− ε0

)degHm
(ui)+1

(since J(m) holds)

= `

(
1

2
− ε0

)degHm+1
(ui)

.

Therefore for all i ∈ [1, h],

|Y m+1
i | ≥ `

(
1

2
− ε0

)degHm+1
(ui)

,

and so J(m + 1) holds, finishing the inductive step.

Thus by mathematical induction, for all n ∈ [0, h], J(n) holds. Specifically, J(h)

holds, which proves the lemma.
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7.2.3 Chvátal et al.’s proof

The main result of this chapter can now be stated and proved.

Theorem 7.2.7 (Chvátal, Rödl, Szemerédi and Trotter, 1983 [28]). For all d ≥ 1,

there exists c = c(d) such that for all graphs H with ∆(H) ≤ d, R(H, H) ≤ c|V (H)|.

Proof. For any D ≥ 1, ε > 0, let S(D, ε) be the statement that for any graph G

admitting an ε-regular partition V (G) = V0 ∪ V1 ∪ · · · ∪ Vk, ` = |V1| = · · · = |Vk|,

for any graph H with ∆(H) ≤ D, and for any positive integer s ≤ `
2D+1 , if H ⊆

REGs(G; 1
2
), then H ⊆ G.

Fix D ≥ 1. By Lemma 7.2.6, there exists ε0 > 0, ε0 = ε0(D), such that S(D, ε0)

holds. Let m = R(D + 1, D + 1), the Ramsey number, and let ε > 0 be such that

ε < min

{
ε0,

1

m(m− 1)

}
.

By Szemerédi’s Regularity lemma (Lemma 7.2.5), there exists M = M(ε,m) ∈ Z+,

such that for every graph G on at least m vertices, there exists a k ∈ [m,M ] such

that G admits an ε-regular partition V (G) = V0 ∪ V1 ∪ · · · ∪ Vk. Let c =
⌈

2D+1M
1−ε

⌉
.

Let H be any graph with ∆(H) ≤ D. Let s = |V (H)|, and let n = cs. Two-colour

the edges of Kn with green and blue, and let G be the green graph (and G the blue

graph).



7.2. Bounded maximum degree implies linear 156

Since

|V (G)| = n = cs ≥ M ≥ m,

the regularity lemma implies that there exists k ∈ [m,M ] and an ε-regular partition

V (G) = V0 ∪ V1 ∪ · · · ∪ Vk. Let ` = |V1| = · · · = |Vk|. The number of edges in

REG(G; 0) is at least

(1− ε)

(
k

2

)
=

1

2
k2

(
k − 1

k

)
(1− ε)

=
1

2
k2

[
1− 1

k
−

(
k − 1

k

)
ε

]

>
1

2
k2

(
1− 1

k
− ε

) (
since

k − 1

k
< 1

)

>
1

2
k2

(
1− 1

k
− 1

m(m− 1)

) (
since ε <

1

m(m− 1)

)

=
1

2
k2

(
1− 1

k
− 1

m− 1
+

1

m

)

≥ 1

2
k2

(
1− 1

k
− 1

m− 1
+

1

k

)
(since m ≤ k)

=
1

2
k2

(
1− 1

m− 1

)

=
1

2
k2

(
m− 2

m− 1

)

≥ t(k, m− 1) (by Theorem 6.2.3).

Therefore by Turán’s theorem (Theorem 6.2.1), there is a copy of Km, call it K ′
m,

inside REG(G; 0).

Colour the edges of K ′
m red and white as follows: colour {Vi, Vj} red if ρ(Vi, Vj) ≥ 1

2
,
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and white if ρ(Vi, Vj) < 1
2
. Since m = R(D + 1, D + 1), there is a monochromatic

copy of KD+1 in K ′
m, call it K ′

D+1.

Claim 1. s ≤ `
2D+1 .

Proof of Claim 1.

` = |V1| = · · · = |Vk|

=
n− |V0|

k

≥ n− εn

k
(since |V0| ≤ εn)

≥ n

(
1− ε

M

)
(since k ≤ M)

= cs

(
1− ε

M

)
(by the definition of n)

=

(
2D+1M

1− ε

)(
1− ε

M

)
s (by the definition of c)

= 2D+1s,

and Claim 1 is proved.

If K ′
D+1 is red, then K ′

D+1 ⊆ REG(G; 1
2
). Apply S(D, ε0) with G, H, and s to get

that if H ⊆ REGs(G; 1
2
), then H ⊆ G (the requirements on s in S(D, ε0) hold by

Claim 1). But,

H ⊆ Ks, . . . , s︸ ︷︷ ︸
χ(H)

(since s = |V (H)|)

⊆ Ks, . . . , s︸ ︷︷ ︸
D+1

(since χ(H) ≤ ∆(H) + 1 ≤ D + 1)
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⊆ REGs

(
G;

1

2

) (
since K ′

D+1 ⊆ REG

(
G;

1

2

))
.

Therefore H ⊆ G.

If K ′
D+1 is white, then since the ε-regular partition of G is also an ε-regular partition

of G (by Lemma 7.2.3), applying S(D, ε0) with G, H, and s, by the same logic as

above since K ′
D+1 ⊆ REG

(
G; 1

2

)
, it follows that H ⊆ G.

In 2000, Graham, Rödl, and Ruciński [62] published a proof to Theorem 7.2.7

avoiding the use of the regularity lemma, and improving the constant c = c(d). The

same authors published a year later [63] that, for bipartite graphs of max degree,

the constant could be further improved.

7.3 A Burr-Erdős conjecture

In their 1973 paper, Burr and Erdős presented a conjecture in the field of Linear

Ramsey theory that is still open today. Recall (see Appendix) that a forest is an

a-cyclic graph. Given a graph G, the arboricity of G, denoted Υ(G), is the minimum

number r so that there exists a partition E(G) = E1 ∪ · · · ∪ Er such that for all

i ∈ [1, r], the graph Gi = (V (G), Ei) is a forest. For example, Υ(K4) = 2 since K4

can be separated into two P3’s, and Υ(K5) = 3 since K5 can be separated into two
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P3 ∪̇K1, and one K1,4.

Conjecture 7.3.1 (Burr, Erdős 1973 [16]). For any d ∈ Z+, the set of graphs with

arboricity at most d is linear Ramsey.

Define the edge density of a graph G by

ρ(G) = max
F⊆G

|E(F )|
|V (F )| .

Recall that for any graph G, δ(G) denotes the minimum degree over all vertices

of G. For any k ∈ Z+, a graph is k-degenerate iff every subgraph of G contains

a vertex of degree less than or equal to k. Alternatively, G is k-degenerate iff

max{δ(F ) : F ⊆ G} ≤ k. For example, for any fixed n ∈ Z+, Kn is n-degenerate,

and (n − 1)-degenerate, but not (n − 2)-degenerate. The degeneracy number of a

graph G, denoted σ(G), is the least k such that G is k-degenerate.

Theorem 7.3.2 (Burr and Erdős, 1973 [16]). For any graph G,

1

2
σ(G) ≤ ρ(G) < Υ(G) + 1 ≤ 2σ(G) + 1.

Proof. Let G be a graph. To see the first inequality,

1

2
σ(G) =

1

2
max
F⊆G

δ(F )

≤ 1

2
max
F⊆G

1

|V (F )|
∑

v∈V (F )

deg(v) (since δ(F ) ≤ 1

|V (F )|
∑

v∈V (F )

deg(v))

=
1

2
max
F⊆G

2|E(F )|
|V (F )|
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= ρ(G).

For the second inequality in the statement of Theorem 7.3.2, as pointed out by

Harary [72, p.90], Nash-Williams proved that for any graph G,

Υ(G) = max
F⊆G

⌊ |E(F )|
|V (F )| − 1

⌋
. (7.2)

Therefore,

ρ(G) = max
F⊆G

|E(F )|
|V (F )| < max

F⊆G

|E(F )|
|V (F )| − 1

≤ max
F⊆G

⌊ |E(F )|
|V (F )| − 1

⌋
+ 1 = Υ(G) + 1.

To prove the third inequality in the statement of Theorem 7.3.2, first note that if

G is empty, the inequality is trivially true, so assume for some non-empty graph G

that the inequality failed; that is, assume Υ(G) > 2σ(G). Then by equation (7.2),

there exists F ⊆ G such that |E(F )|
|V (F )|−1

> 2σ(G) (since G is non-empty, σ(G) > 0,

and therefore F is also non-empty). By the definition of σ(G), every subgraph of

G must contain a vertex of degree at most |E(F )|
2(|V (F )|−1)

.

Let n = |V (F )|, and enumerate V (F ) = {v1, . . . , vn} so that for each i ∈ [1, n], vi

is the vertex of minimum degree in Fi = F [{v1, . . . , vi}]. Then,

|E(F )| =
n∑

i=1

degFi
(vi)

=
n∑

i=2

degFi
(vi) (since F1 = K1)

≤
n∑

i=2

|E(F )|
2(n− 1)
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= (n− 1)
|E(F )|

2(n− 1)

=
|E(F )|

2
,

a contradiction since F was non-empty. Therefore for all graphs G, Υ(G) ≤ 2σ(G).

The consequence of Theorem 7.3.2 relevant to this section is that a family of graphs

has bounded arboricity iff it has bounded edge density iff it has bounded degeneracy

number.

Burr and Erdős admit that Conjecture 7.3.1, if true, is not best possible, as exhibited

by the linear Ramsey family of graphs F = {4iKi : i ∈ Z+}.

Theorem 7.3.3. The family F = {4iKi : i ∈ Z+} has unbounded degeneracy

number.

Proof. For all i ∈ Z+,

σ(4iKi) = max{δ(F ) : F ⊆ 4iKi} = δ(4iKi) = i− 1.

Therefore as i increases, σ(4iKi) goes to infinity.
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7.4 Arrangeable graphs are linear Ramsey

Chen and Schelp [23] generalized Theorem 7.2.7 with the following (new) family

of graphs: for any k ∈ Z+, a graph G is k-arrangeable iff there exists an ordering

v1, . . . , vn of V (G) with the property that for all i ∈ [1, n−1], if Li = G[{v1, . . . , vi}]

and Ri = G[{vi, . . . , vn}], then

∣∣∣
⋃
{NLi

(x) : x ∈ NRi
(vi)}

∣∣∣ ≤ k.

Stated another way, G is k-arrangeable if there exists an ordering v1, . . . , vn of V (G)

with the property that for all i ∈ [1, n− 1],

|{vj : j ≤ i and ∃s > i s.t. vs ∈ N(vi) ∩N(vj)}| ≤ k.

In order to aid in understanding of what a k-arrangeable graph is, some examples

are provided here.

Proposition 7.4.1. Every cycle is 2-arrangeable, and not 1-arrangeable.

Proof. Let n ∈ Z+, and let G = Cn. To see that G is 2-arrangeable, order

V (G) = {v1, v2, . . . , vn} such that E(G) = {{vi, vi+1} : i ∈ [1, n − 1]} ∪ {{v1, vn}}.

For each i ∈ [1, n− 1], let S(i) be the statement that

∣∣∣
⋃
{NLi

(x) : x ∈ NRi
(vi)}

∣∣∣ ≤ 2.

It suffices to show that for each i ∈ [1, n−1], S(i) holds. Since L1 = K1, S(1) holds.
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For each i ∈ [2, n− 1],

∣∣∣
⋃
{NLi

(x) : x ∈ NRi
(vi)}

∣∣∣ = |NLi
(vi+1)| ≤ 2,

and therefore S(i) holds, proving G is 2-arrangeable.

To see that G is not 1-arrangeable, let V (G) = {v1, v2, . . . , vn} be any arbitrary

ordering of V (G). Set NG(vn) = {vi, vj} with i < j. Then

∣∣∣
⋃
{NLi

(x) : x ∈ NRi
(vj)}

∣∣∣ ≥ |NLi
(vn)| = 2.

Note that the first part of the proof of Proposition 7.4.1 relies only on the fact that

cycles are 2-regular. Similarly, the second part only relies on the fact that δ(G) ≥ 2.

Therefore the same arguments can be improved to yield the following corollaries:

Corollary 7.4.2. Every 2-regular graph is 2-arrangeable (and not 1-arrangeable).

Corollary 7.4.3. Let k ∈ Z+, and let G be a graph with δ(G) ≥ k. Then G is not

(k − 1)-arrangeable.

Proposition 7.4.1 (and Corollary 7.4.2) do not exhibit all 2-arrangeable graphs. The

graph G = K4\e is 2-arrangeable, as shown by the following ordering of the vertices

of G.

The following theorems relate “arrangeability” to the degeneracy number and the

maximum degree of a graph.



7.4. Arrangeable graphs are linear Ramsey 164

Theorem 7.4.4 (Chen and Schelp, 1993 [23]). For all k ∈ Z+, every k-arrangeable

graph is k-degenerate.

Proof. Let k ∈ Z+, and fix a k-arrangeable graph G. For any i ∈ [1, n−1], let Li =

G[{v1, . . . , vi}] and Ri = G[{vi, . . . , vn}]. Let G be ordered as V (G) = {v1, . . . , vn}

such that for all i ∈ [1, n− 1],

∣∣∣
⋃
{NLi

(x) : x ∈ NRi
(vi)}

∣∣∣ ≤ k.

Let F ⊆ G, and let V (F ) = {w1, . . . , wm} be the ordering of the vertices of F

respecting the ordering of V (G). If degF (wm) = 0, then δ(F ) = 0. Otherwise, let

wj ∈ NF (wm) be the neighbour of wm with the highest index with respect to the

ordering of V (G) (i.e. for all ` ∈ Z+, j < ` < m, w` 6∈ NF (wm)). Then,

δ(F ) ≤ degF (wm)

= |NLj
(wm)|

≤
∣∣∣
⋃
{NLj

(x) : x ∈ NRj
(wj)}

∣∣∣

≤ k.

Then since F was an arbitrary subgraph of G, G is k-degenerate.

Theorem 7.4.5 (Chen and Schelp, 1993 [23]). For all d ∈ Z+, every graph with

max degree at most d is (d(d− 1) + 1)-arrangeable.

Proof. Let G be a graph such that ∆(G) ≤ d, and let v1, . . . , vn be an arbitrary or-

dering of V (G). Then for all i ∈ [1, n], |N(vi)| ≤ ∆(G) ≤ d. Let Li = G[{v1, . . . , vi}]
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and Ri = G[{vi, . . . , vn}]. Then |NRi
(vi)| ≤ d, and so |⋃{NLi

(x) : x ∈ NRi
(vi)}| ≤

d(d− 1) + 1.

The following theorem is the main result in this section.

Theorem 7.4.6 (Chen and Schelp, 1993 [23]). For any k ∈ Z+, the family of

k-arrangeable graphs is linear Ramsey.

The proof of Theorem 7.4.6 is omitted.

Recall that a graph is planar if it can be drawn in the plane with no edges crossing,

and outerplanar if it can be drawn with all vertices on a circle with no edges

crossing. Chen and Schelp showed that every forest is 1-arrangeable (a consequence

of Proposition 7.4.1), every outerplanar graph is 3-arrangeable, and every planar

graph is 761-arrangeable, thereby proving that the family of planar graphs (which

contains all forests and outerplanar graphs) is linear Ramsey. They also show that

Theorem 7.4.6 is not equivalent to Conjecture 7.3.1 by constructing an infinite

family of graphs with bounded edge density, but for which there is no finite k such

that all are k-arrangeable.
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7.5 d-degenerate graphs are quadratic Ramsey

In 2003 and 2004, two “major” theorems were proved, making progress towards

proving Conjecture 7.3.1. The first, due to Kostochka and Sudakov [89], proved

with the probabilistic method that for any d ∈ Z+, and any d-degenerate graph G,

R(G,G) ≤ |V (G)|1+o(1).

The second, due to Kostochka and Rödl [87], showed that if d-degenerate graphs

are not linear Ramsey, they are at worst “polynomial” Ramsey (in fact “quadratic”

Ramsey). The former is omitted, but the latter is presented here in detail. All

following theorems and lemmas, unless otherwise noted, are from [87]. The theorem

to be proved is as follows.

Theorem 7.5.1 (Kostochka and Rödl, 2004 [87]). For any d ∈ Z+, and for any

d-degenerate graph G, there exists a constant c = c(d) such that

R(G,G) ≤ c|V (G)|2.

The proof of Theorem 7.5.1 is long (approximately the next sixteen pages), and this

result is not used again. Therefore, the proof can be safely skipped by the reader.

The following elementary fact is used (without proof):

Proposition 7.5.2. Let X be a set, and let A ⊆ X, B ⊆ X. Then |A ∩ B| =

|A|+ |B| − |A ∪B|, and more specifically, |A ∩B| ≥ |A|+ |B| − |X|.
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Theorem 7.5.3. Let k, d ∈ Z+, and let G be a graph with δ(G) ≥ k. Then for any

v1, . . . , vd ∈ V (G), ∣∣∣∣∣
d⋂

i=1

N(vi)

∣∣∣∣∣ ≥ dk − (d− 1)|V (G)|.

Proof. The proof is by induction on d. For any d ∈ Z+, let S(d) be the statement

that for all d vertices v1, . . . , vd ∈ V (G),
∣∣∣∣∣

d⋂
i=1

N(vi)

∣∣∣∣∣ ≥ dk − (d− 1)|V (G)|.

Base Case: The statement S(1) reduces to ∀v ∈ V (G), |N(v)| ≥ k, which is true.

Inductive Step: Let m ≥ 1, and assume that S(m) holds. Let v1, . . . , vm+1 ∈ V (G).

Then
∣∣∣∣∣
m+1⋂
i=1

N(vi)

∣∣∣∣∣ ≥
∣∣∣∣∣

m⋂
i=1

N(vi)

∣∣∣∣∣ + |N(vk+1)| − |V (G)| (by Proposition 7.5.2)

≥ mk − (m− 1)|V (G)|+ |N(vk+1)| − |V (G)| (since S(m) holds)

≥ mk − (m− 1)|V (G)|+ k − |V (G)| (since δ(G) ≥ k)

= (m + 1)k −m|V (G)|.

Therefore S(m + 1) holds, and by induction, for all d ∈ Z+, S(d) holds.

Lemma 7.5.4. Let c ≥ 0, λ ≥ 0, n ≥ 1, and let H be a graph on n vertices with

E(H) ≥ (c + λ)
(

n
2

)
. Then there exists an induced subgraph H ′ ¹ H such that

δ(H ′) ≥ c(|V (H ′)| − 1) +
λn

2
.
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Proof. Assume the lemma is not true. Then every induced subgraph H ′ of H has

δ(H ′) < c(|V (H ′)| − 1) +
λn

2
.

Sort the vertices of H as v1, . . . , vn such that in the graph Hi = H[{v1, . . . , vi}], the

vertex vi is of minimum degree. Then K1 = H1 ¹ H2 ¹ . . . ¹ Hn = H.

Counting the edges of H,

|E(H)| =
n∑

i=2

degHi
(vi)

<

n∑
i=2

(
c(|V (Hi)| − 1) +

λn

2

)
(by assumption)

= c

n∑
i=2

(i− 1) +
λn

2

n∑
i=2

1

= c

n−1∑
i=1

(i) +
λn(n− 1)

2

= c

(
n

2

)
+ λ

(
n

2

)

≤ |E(H)| (by the definition of H).

Thus |E(H)| < |E(H)|, a contradiction.

The proof of the main result, Theorem 7.5.1, is separated into two cases. First, it is

shown that if a graph H is large enough, and contains a large subgraph without too

many edges, then H contains every d-degenerate graph. Second, it is shown that if

a graph H is large enough, and every large subgraph contains many edges, then H

must contain every d-degenerate graph.
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Let d, n, s ∈ Z+. A graph is said to have the (d, n)-property iff every d vertices have

at least n− d common neighbours, i.e., G has the (d, n)-property iff for all distinct

d vertices v1, . . . , vd ∈ V (G),

|N(v1) ∩ · · · ∩N(vd)| ≥ n− d.

For example, the only graph on n vertices with the (1, n)-property is Kn.

Lemma 7.5.5. Let n, d ∈ Z+, and let H be a graph with |V (H)| > 4n such that

there exists an induced subgraph H ′ ¹ H on at least 4n vertices satisfying

|E(H ′)| < 1

2d

(|V (H ′)|
2

)
.

Then H ′ contains a subgraph with the (d, n)-property.

Proof. Let k = |V (H ′)|. Then,

|E(H ′)| ≥
(

k

2

)
−

[
1

2d

(
k

2

)]

=

(
1− 1

2d

)(
k

2

)

=

(
1− 1

d
+

1

2d

)(
k

2

)
.

Let c = 1− 1
d
, λ = 1

2d
. Then by Lemma 7.5.4, there exists H1 ⊆ H ′ such that

δ(H1) ≥ c(|V (H1)| − 1) + λ
|V (H ′)|

2

=

(
1− 1

d

)
(|V (H1)| − 1) +

1

2d

(
k

2

)

=
d− 1

d
(|V (H1)| − 1) +

k

4d
.
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Then for all v1, . . . , vd ∈ V (H1),

∣∣∣∣∣
d⋂

i=1

NH1
(vi)

∣∣∣∣∣ ≥ d

(
d− 1

d
(|V (H1)| − 1) +

k

4d

)
− (d− 1)|V (H1)| (by Thm 7.5.3)

= (d− 1)(|V (H1)| − 1) +
k

4
− (d− 1)|V (H1)|

= −(d− 1) +
k

4

≥ −d + 1 +
4n

4
(since |V (H ′)| ≥ 4n)

= n− d + 1

> n− d.

Therefore H1 ⊆ H ′ has the (d, n)-property.

Lemma 7.5.6. For all d, n ∈ Z+, every graph with the (d, n)-property contains as

a subgraph every d-degenerate graph on n vertices.

Proof. Let d, n ∈ Z+, let H be a graph with the (d, n)-property, and let G be a

d-degenerate graph on n vertices. Order the vertices of G as x1, . . . , xn such that xi

is of minimum degree in Gi = G[{x1, . . . , xi}]. For any m ∈ [1, n], let J(m) be the

statement that there exists a function f embedding Gm into H.

Base Case: Since G1 = K1, J(1) holds.

Inductive Step: Let k ∈ [1, n−1], and assume that J(k) holds. Let f : {x1, . . . , xk} →

V (H) be an embedding of Gk into H, and let Y = NGk+1
(xk+1).



7.5. d-degenerate graphs are quadratic Ramsey 171

Informally, let S ∈ [V (H)]d be such that f(Y ) ⊆ S, and

|NH(S) ∩ (V (H) \ f(Gk))| ≥ 1.

This unusual definition for S is due to the fact that S always needs to be a set

of d vertices, should contain f(Y ), and needs to be such that there is at least one

common neighbour of the vertices of S outside of f(Gk). Formally, if k < d, let

S ∈ [V (H)]d be any set such that f(Gk) ⊆ S. Otherwise, if k ≥ d, let S ∈ [V (H)]d

be any set such that f(Y ) ⊆ S ⊆ f(Gk) (see Figure 7.2). Since |S| = d, and H has

Figure 7.2: The embedding f , and the set S.

the (d, n)-property, the vertices in S have n−d common neighbours in H, and since

|f(Gk) \ S| = k − d ≤ n− 1− d < n− d,

at least one common neighbour of the vertices of S, call it s, is outside f(Gk).

Extend f to f ∗ by defining f ∗(xk+1) = s. Then f ∗ is an embedding of Gk+1 into H,

and therefore J(k + 1) holds.
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Thus by induction, for all m ∈ Z+, J(m) holds, and Lemma 7.5.6 is proved.

A graph H is said to be (d, s)-thick if for every induced subgraph H ′ ¹ H on at

least s vertices,

|E(H ′)| ≥ 1

2d

(|V (H ′)|
2

)
.

In other words, every “big” subgraph has “many” edges. Therefore if a graph is not

(d, s) thick, then there exists a large subgraph with not too many edges.

Lemma 7.5.7. Let d, n ∈ Z+, let G be any d-degenerate graph on n vertices, and

let H be a graph on more than 4dn vertices that is not (d, 4dn)-thick. Then G ⊆ H.

Proof. Since H is not (d, 4dn)-thick, there exists an H ′ ¹ H on at least 4dn vertices

such that

|E(H ′)| < 1

2d

(|V (H ′)|
2

)
.

Then by Lemma 7.5.5, H ′ contains a subgraph with the (d, n)-property, which by

Lemma 7.5.6, contains G.

Therefore every graph that is not (d, 4dn)-thick contains a copy of G in its comple-

ment. Next it is proved that every large enough (d, 4dn)-thick graph contains G.

To begin with, the following elementary lemma is required.

Lemma 7.5.8. Let k ∈ Z+, and let X be a set. Let B ⊆ X such that for every

A ∈ [X]k, A ∩B 6= ∅. Then |B| ≥ |X| − (k − 1).
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Proof. If not, then B ≤ |X|−k. However, then |X \B| = |X|− |B| ≥ |X|− (|X|−

k) = k, and any set A ∈ [X \B]k is such that A ∩B = ∅, a contradiction.

Let r,m, d ∈ Z+. For a graph H, an (H, r,m, d)-reducing pair is defined to be a

pair of sets (R, S) such that R,S ⊆ V (H), R ∩ S = ∅, |R| = r, |S| ≥ 3
4
|V (H)|
md−1 , and

for all v ∈ R, |NH(v) ∩ S| ≤ 4
3
|S|
m

.

Lemma 7.5.9. Let d ≥ 2, r ≥ 2,m ≥ 8d, and let H be a graph with at least

2rm4d2−d vertices. If every subgraph H1 ⊆ H with |V (H1)| > 1

m4d2 |V (H)| contains

an (H1, r,m, d)-reducing pair, then H contains a subgraph H ′ on exactly 4dr vertices

with |E(H ′)| < 1
2d

(
4dr
2

)
. Consequently, H is not (d, 4dr)-thick.

Proof. Assume that every subgraph H1 ⊆ H with |V (H1)| > 1

m4d2 |V (H)| contains

an (H1, r,m, d)-reducing pair. Construct a sequence of graphs

H0 Â H1 Â · · · Â H4d−1

in the following inductive way: Let H0 = H. Let k ∈ [0, 4d − 2], and assume that

Hk has been defined such that |V (Hk)| > 1
mkd |V (H)|. By assumption, since

1

mkd
>

1

m4d2 ,

an (Hk, r,m, d)-reducing pair (Rk, Sk) can be chosen in Hk. The number of edges

between Rk and Sk, |E(Rk, Sk)|, is

|E(Rk, Sk)| =
∑
v∈Rk

|NHk
(v) ∩ Sk|
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≤
∑
v∈Rk

4

3

|Sk|
m

(by the definition of a reducing pair)

= |Rk|4
3

|Sk|
m

. (7.3)

Claim. There exists an S ′k ⊆ Sk with |S ′k| ≥ |Sk|
3

such that for all v ∈ S ′k,

|NHk
(v) ∩Rk| ≤ 2

m
|Rk|.

Proof of claim. Suppose the claim is not true, i.e., for all S ′k ⊆ Sk with |S ′k| ≥ |Sk|
3

,

there exists v ∈ S ′k such that

|NHk
(v) ∩Rk| > 2

m
|Rk|.

Then, by Lemma 7.5.8, there are at least

1 +

(
|Sk| −

⌈ |Sk|
3

⌉)
>

2

3
|Sk|

vertices v in Sk such that |NHk
(v)∩Rk| > 2

m
|Rk|, and therefore |E(Rk, Sk)| counted

a second way is

|E(Rk, Sk)| =
∑
v∈Sk

|NHk
(v) ∩Rk|

>
2

3
|Sk|

(
2

m
|Rk|

)

= |Rk|4
3

|Sk|
m

≥ |E(Rk, Sk)|, (by equation (7.3))

which is a contradiction, proving the claim.
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Let Hk+1 be the subgraph of H induced on the vertices S ′k. Then

|V (Hk+1)| ≥ |Sk|
3

≥ 1

3

(
3

4

|V (Hk)|
md−1

)
(by the definition of a reducing pair)

=
m

4

|V (Hk)|
md

≥ |V (Hk)|
md

(since m ≥ 8d ≥ 16)

>
1

md

|V (H)|
mkd

(by induction hypothesis)

=
|V (H)|
m(k+1)d

.

Therefore |V (Hk+1)| > |V (H)|
m(k+1)d , which completes the inductive step.

Notice that

|V (H4d−1)| = |S ′4d−2| ≥
|V (H)|
m(4d−1)d

≥ 2rm4d2−d

m4d2−d
= 2r > r.

Let R4d−1 be any subset of S ′4d−2 of cardinality r. Let R̃ =
⋃4d−1

k=0 Rk and H̃ = H[R̃].

Since for all k = 0, . . . , 4d − 1, |Rk| = r, and they are all disjoint, it follows that

|R̃| = 4dr, and since Rk+1 ⊆ S ′k, for all i < j,

|EH(Ri, Rj)| ≤ |Rj| 2
m
|Ri| (by definition of S ′k)

=
2r2

m
.

Thus,

|E(H̃)| =
4d−1∑
i=0

E(H[Ri]) +
∑
i<j

EH(Ri, Rj)
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≤ 4d

(
r

2

)
+

(
4d

2

)
2r2

m

= (2dr)

(
r − 1 +

2(4d− 1)r

m

)

= (2dr)(4dr − 1)

(
r − 1

4dr − 1
+

8dr − 2r

m(4dr − 1)

)

= (2dr)(4dr − 1)

(
1

4d

(
r − 1

r − 1
4d

)
+

2

m

(
4dr − r

4dr − 1

))

< (2dr)(4dr − 1)

(
1

4d
+

2

m

)

≤
(

4dr

2

)(
1

4d
+

2

8d

)
(since m ≥ 8d)

=
1

2d

(
4dr

2

)
.

Therefore H̃ ⊆ H has 4dr vertices, and less than 1
2d

(
4dr
2

)
edges, proving the lemma.

Let H be a graph with V (H) = M . A set A ⊆ V (H) is called (H,m)-good iff

∣∣∣∣∣
⋂
v∈A

NH(v)

∣∣∣∣∣ ≥
M

m|A| ,

and is (H,m)-bad otherwise.

Lemma 7.5.10. Fix m ≥ 2, r, d. Let H be a graph such that |V (H)| ≥ 2rmd. Then

if there exists an (H, m)-good set A in H of order at most d− 1, and there exist r

elements v1, . . . , vr such that for all i ∈ [1, r], A∪{vi} is (H,m)-bad, then H contains

an (H, r,m, d)-reducing pair. Consequently, if H contains no (H, r,m, d)-reducing

pair, then there are at most r − 1 (H, m)-bad singletons.
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Proof. Fix a graph H with |V (H)| ≥ 2rmd that contains a (H, m)-good set A,

and r elements v1, . . . , vr such that for all i ∈ [1, r], A ∪ {vi} is (H,m)-bad. Let

R = {v1, . . . , vr} and let S = NH(A) \R (see Figure 7.3).

Figure 7.3: Construction of S and R

At this point we locally define NH(∅) = V (H), in order for the proof to work when

A = ∅. The cardinality of S is

|S| = |NH(A) \R|

= |NH(A)| − |NH(A) ∩R|
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≥ |NH(A)| − r

≥ |V (H)|
m|A| − r (since A is (H, m)-good)

≥ |V (H)|
m|A| − |V (H)|

2md
(since |V (H)| ≥ 2rmd)

=
|V (H)|
m|A|

(
1− 1

2md−|A|

)

≥ |V (H)|
m|A|

(
1− 1

4md−1−|A|

)
(since m ≥ 2)

≥ |V (H)|
m|A|

(
1− 1

4

)
(since |A| ≤ d− 1)

=
3

4

|V (H)|
m|A| (7.4)

≥ 3

4

|V (H)|
md−1

(again since |A| ≤ d− 1).

Further, for all v ∈ R,

|NH(v) ∩ S| ≤ |NH(R) ∩NH(A)| (since NH(v) ∩ S ⊆ NH(R) ∩NH(A))

≤ |NH(v1) ∩NH(A)|

<
1

m

|V (H1)|
m|A| (since A ∪ {v1} is (H, m)-bad)

≤ 1

m

4

3
|S| (by equation (7.4))

=
4

3

|S|
m

.

Therefore (R,S) is an (H, r,m, d)-reducing pair. The second part of the lemma is

shown by noticing that A = ∅ is an (H,m)-good set, and using the contrapositive

of the first part.

Lemma 7.5.11. Fix n,m, ∆, d, α ∈ R+ such that n > ∆ ≥ d ≥ 2, m ≥ d, and
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α ≥ 1. Let M0 = md∆αn. If a graph H on M1 > M0 vertices has no (H, αn, m, d)-

reducing pairs, then every d-degenerate graph G on n vertices with maximum degree

∆ can be embedded into H.

Proof. Order the vertices of G as x1, . . . , xn such that for all i = 1, . . . , n, and

Gi = G[{x1, . . . , xi}], degGi
(xi) ≤ d. An embedding f of Gi into H is inductively

defined, maintaining the property that

∀j ∈ [i + 1, n], f(NGj
(xj) ∩ {x1, . . . , xi}) is (H, m)-good. (7.5)

Since H has no (H,αn,m, d)-reducing pair, the consequence of Lemma 7.5.10 says

that there are at most αn−1 (H, m)-bad singletons. Since |V (H)| > md∆αn > αn,

there exists an element, call it v1, such that {v1} is (H, m)-good. Therefore define

f(x1) = v1.

Let k ≥ 1, and assume that f embeds Gk into H, maintaining property (7.5).

Enumerate

NGk
(xk) = {xi1 , xi2 , . . . , xid′},

and let A = f(NGk
(xk)). It remains to embed xk+1 into NH(A), maintaining the

property that

∀j = k + 2, . . . , n f(NGj
(xj) ∩ {x1, . . . , xk, xk+1}) is (H, m)-good.

Let j ∈ [k + 2, . . . , n]. If xk+1 6∈ NGj
(xj), then f(NGj

(xj) ∩ {x1, . . . , xk+1}) is
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(H, m)-good since f satisfies property (7.5), so assume xk+1 ∈ NGj
(xj).

Since f satisfies property (7.5), f(NGj
(xj)∩{x1, . . . , xk}) is also (H, m)-good. Since

xk+1 ∈ NGj
(xj),

f(NGj
(xj) ∩ {x1, . . . , xk+1}) = f(NGj

(xj) ∩ {x1, . . . , xk}) ∪ {f(xk+1)} (7.6)

Then by Lemma 7.5.10, there are at most αn− 1 elements that f cannot map xk+1

to. Therefore for each j ∈ [k + 2, n] with xk+1 ∈ NGj
(xj), there are at most αn− 1

elements f(xk+1) cannot be. Consider two cases:

Case 1. If A = ∅, then

|NH(A) \ f(Gk)| − |NG(xk+1) \Gk|(αn− 1)

= M1 − k − |NG(xk+1) \Gk|(αn− 1)

≥ M1 − k −∆(αn− 1)

= M1 − αn−∆αn + ∆ (since k ≤ αn)

> M1 − αn(1 + ∆)

> M0 − αn(1 + ∆)

> 0.

Case 2. If A 6= ∅, then

|NH(A) \ f(Gk)| − |NG(xk+1) \Gk|(αn− 1)
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≥ |NH(A)| − k − (∆− 1)(αn− 1)

= |NH(A)| −∆αn + (∆ + αn− (k + 1))

≥ |V (H)|
m|A| −∆αn

≥ |V (H)|
md

−∆αn

>
md∆αn

md
−∆αn

= 0.

Therefore, xk+1 can be mapped to at least one element without causing any new

bad sets. The inductive embedding is now complete, and the lemma is proved.

Theorem 7.5.12. Let d, n ∈ Z+, and let G be a d-degenerate graph on n vertices

with maximum degree ∆. Let H be an arbitrary graph with at least (8d)4d2+d∆n

vertices. Then either G ⊆ H, or G ⊆ H.

Proof. If H is not (d, 4dn)-thick, then by Lemma 7.5.7, G ⊆ H, and the proof

is done. If H is (d, 4dn)-thick, then by the contrapositive of Lemma 7.5.9 (with

m = 8d and r = n), there exists an H1 ⊆ H with

|V (H1)| > 1

(8d)4d2 |V (H)| ≥ (8d)d∆n

that does not contain any (H1, n, 8d, d)-reducing pairs. Then by Lemma 7.5.11 (with

H = H1, α = 1 and m = 8d), G ⊆ H1. This proves the theorem.

The following corollary proves Theorem 7.5.1.
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Corollary 7.5.13. For any d ∈ Z+, and any d-degenerate graph G,

R(G,G) ≤ (8d)4d2+d∆(G)|V (G)|.

7.6 Ramsey-size linear graphs

Recently another type of linear Ramsey has been defined, where “linear” instead

refers to linear in the number of edges.

By Theorem 4.4.2, for any tree T , R(K3, T ) = 2|E(T )|+1. In 1980, Harary [6, 131]

asked if it was true that for every graph G, R(K3, G) ≤ 2|E(G)| + 1. Sidorenko

[131] proved this bound in 1993, and this motivated the following definition: Let G

be a graph with at least three vertices. Then G is defined to be Ramsey size linear

iff there exists a constant c = c(G) such that for every graph H with no isolated

vertices, R(G,H) ≤ c|E(H)|.

Theorem 7.6.1 (Erdős, Faudree, Rousseau, and Schelp, 1993 [39]). Let G be a

connected graph. If |E(G)| ≤ |V (G)|+ 1 then G is Ramsey size linear. If |E(G)| ≥

2(|V (G)| − 1), then G is not Ramsey size linear. Further, for all n ∈ Z+, and for

all e ∈ [n + 2, 2n− 3], there exist graphs G1 and G2 each on n vertices and e edges,

one of which is Ramsey size linear, and one of which is not.

Note that due to Theorem 7.6.1, K4 is not Ramsey size linear. It is interesting
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to note that this fact can be verified using Spencer’s [133] bound on R(K4, Kt)

(Theorem 3.4.9):

R(K4, Kt) > c

(
t

log t

) 5
2

.

It can be shown that, for large enough t,
(

t
log t

) 5
2

>
(

t
2

)
. Therefore, there can be no

constant c such that for every t ∈ Z+, R(K4, Kt) < c
(

t
2

)
, which verifies that K4 is

not Ramsey size linear.



Chapter 8

Restricted Ramsey theorems

Restricted graph Ramsey questions are of the form, for some r ∈ Z+ and some

graphs G1, . . . , Gr, does there exists a graph F so that F −→ (G1, . . . , Gr)
K2
r , and

such that F satisfies some restrictive property (like F is K4-free, or 2-connected)?

This chapter presents some representative theorems answering restricted graph

Ramsey questions.

8.1 Graphs arrowing K3

Given a family of graphs G, define Forb(G) as the class of graphs which do not

contain induced subgraphs isomorphic to any element of G. If G = {G}, a family

184



8.1. Graphs arrowing K3 185

consisting of a single graph G, then write Forb(G) rather than Forb({G}). Also,

say F ∈ Forb(G) is G-free. In Section 3.1.2, it was shown that K6 −→ (K3)
K2
2 .

It follows that any graph that contains a K6 also arrows K3. Is there a K6-free

graph (i.e., a graph in Forb(K6)) that arrows (K3)
K2
2 ? Erdős and Hajnal asked this

question in 1967 [41], and it was answered by Graham the following year:

Theorem 8.1.1 (Graham, 1968 [61]). K3 + C5 −→ (K3)
K2
2 , and no other K6-free

graph on fewer than eight vertices has this property.

The proof is done by checking cases, similar to the proof of K6 −→ (K3)
K2
2 , but

longer, and is omitted. One can verify (see Figure 8.1) that K3+C5 does not contain

Figure 8.1: The graph K3 + C5

a K6, but it does contain a number of K5’s. Two years later, Folkman published

the following theorem:

Theorem 8.1.2 (Folkman, 1970 [53]). For all a ∈ Z+, there exists a graph F ∈

Forb(Ka+1) such that F −→ (Ka)
K2
2 .
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Theorem 8.1.2 is (trivially) best possible in terms of forbidding complete graphs.

Folkman’s proof of Theorem 8.1.2 was constructive, but the graph constructed by

Folkman’s proof was astronomically large. To illustrate how large it was, Erdős (see

[135]) later offered a reward for producing such a graph with less than 1010 vertices.

Erdős was given an affirmative answer by Spencer in 1988 [135] (with an erratum a

year later [136]). Spencer showed that there is positive probability that a random

graph on 3 · 109 vertices with a random edge removed from each copy of K4 will

arrow (K3, K3)
K2
2 . According to [135], Spencer’s proof technique is so specific that

it only works for arrowing (K3, K3)
K2
2 .

8.2 Folkman Numbers

For any r, a, m1, . . . ,mr ∈ Z+, define the vertex-colouring Folkman number as

Fv(m1, . . . , mr; a) = min{|V (F )| : F ∈ Forb(Ka), F −→ (Km1 , . . . , Kmr)
K1
r },

and define the edge-colouring Folkman number as

Fe(m1, . . . , mr; a) = min{|V (F )| : F ∈ Forb(Ka), F −→ (Km1 , . . . , Kmr)
K2
r }.

Very few exact values of the Folkman numbers are known. The solution to the party

problem shows that Fe(3, 3; 7) = 6. By Theorem 8.1.1, Fe(3, 3; 6) = 8. Note that if

a < b, then Fe(m1, . . . , mr; a) ≥ Fe(m1, . . . , mr; b) since forbidding Ka also forbids
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Kb. Also, if a > R(m1, . . . , mr), then Fe(m1, . . . , mr; a) = R(m1, . . . , mr).

In 1999, Piwakowski, Radziszowski, and Urbański [119] showed Fe(3, 3; 5) = 15.

Radziszowski and Xiaodong [125] recently proved that Fe(3, 3; 4) ≥ 19, and this

result, together with Spencer’s upper bound are currently the best known bounds

for Fe(3, 3; 4):

19 ≤ Fe(3, 3; 4) ≤ 3 · 109.

Radziszowski and Xiaodong [125] conjecture that there may be a graph with as few

as 127 vertices that is K4-free, and arrows (K3)
K2
2 , and that Fe(3, 3; 4) may be even

less than 100.

In terms of the vertex-colouring Folkman numbers, for r, a, m1, . . . ,mr ∈ Z+, and

M = 1 +
∑r

i=1 mi, it follows by the pigeonhole principle that R1(m1, . . . , mr) = M ,

and therefore if a > M , Fv(m1, . . . , mr; a) = M . For the case a = M , ÃLuczak and

Urbański [95] showed that

Fv(m1, . . . , mr; M) = max{m1, . . . , mr}+ M.

When a = M−2, only one non-trivial result is known, namely that Fv(2, 2, 2, 2; 3) =

22 [77]. According to [30], most of the research done on this topic has been in the

case a = M − 1. For more known results, see, e.g., [30, 94, 95, 125].
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8.3 The Erdős girth-chromatic number theorem

If a graph has high chromatic number, one might expect that this graph has short

cycles. However, in 1959, Erdős proved that there are graphs with no small cycles,

and yet with high chromatic number. Recall that the girth of a graph G is the

length of the shortest cycle in G, that is,

girth(G) = min{|V (C)| : C is a cycle in G}.

Theorem 8.3.1 (Erdős, 1959 [35]). Given any positive integers r ≥ 2, p ≥ 3, there

exists a graph G with girth(G) > p and χ(G) > r.

The proof of Theorem 8.3.1 is omitted (see, e.g., [3, pp. 38–39] or [79, pp. 265–266]).

On the surface, Theorem 8.3.1 does not appear to be a restricted graph Ramsey

theorem, but it can be restated in the following “restricted Ramsey-manner”:

Theorem (Erdős girth-chromatic number theorem restated). Given any positive

integers r ≥ 2, p ≥ 3, there exists a graph F ∈ Forb({C3, . . . Cp}) such that F −→

(K2)
K1
r .

The Erdős girth-chromatic number theorem has also been generalized to k-uniform

hypergraphs. A (simple) cycle of length n in a hypergraph G is a sequence

(v1, e1, v2, e2, . . . , vn, en)

of distinct alternating vertices and hyperedges such that for each i ∈ [1, n − 1],
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{vi, vi+1} ⊆ ei, and {v1, vn} ⊆ en. For i, k ≥ 2, let Ck
i denote a k-uniform hyper-

graph that is a cycle of length i containing no smaller cycle. For i ≥ 3, hyperedges

in Ck
i intersect in at most one vertex, forcing Ck

i to be unique up to isomorphism.

The Erdős girth-chromatic number theorem can then be restated for hypergraphs

(see [40]): given any positive integers k, r, p ≥ 2, there exists a k-uniform hyper-

graph G with girth(G) > p and χ(G) > r, and therefore, if ek denotes an arbitrary

k-hyperedge, there exists a k-uniform hypergraph F ∈ Forb({Ck
2 , . . . Ck

p}) such that

F −→ (ek)
K1
r . To see why this Ramsey translation holds, it suffices to see (trivially)

that for any hypergraph F , girth(F ) > p implies that F ∈ Forb({Ck
2 , . . . , Ck

p}).

Theorem 8.3.1 can be applied to produce a restricted Ramsey theorem about 2-

connected graphs. Recall a graph is said to be n-connected if it is connected and

cannot be made disconnected by removing n−1 vertices (e.g., a graph is 2-connected

if it cannot be disconnected by removing one vertex).

Theorem 8.3.2 (Nešetřil and Rödl, 1976 [105]). Let A be any finite family of 2-

connected graphs. Then for every r ∈ Z+, G ∈ Forb(A), there exists an F ∈

Forb(A) such that

F
ind−→ (G)K1

r .

Proof. Let A be any such finite family, and let r ∈ Z+. Let

p = min{|V (A)| : A ∈ A}.
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If p = 1, Forb(A) is empty. If p = 2, then K2 ∈ A, and therefore Forb(A) is made

up of empty graphs, and the theorem is proved by the pigeonhole principle.

Assume p > 2. Let G ∈ Forb(A), let k = |V (G)|, and let q = max{|V (A)| : A ∈ A}.

By Theorem 8.3.1, there exists a k-uniform hypergraph H with girth(H) > q and

χ(H) > r. For each e ∈ E(H), fix a bijection ψe : V (G) → e. Let F be the graph

with V (F ) = V (H), and

E(F ) = {{ψe(v1), ψe(v2)} : {v1, v2} ∈ E(G) and e ∈ E(H)}

(that is, replace each k-edge of H with a copy of G). Note that E(F ) is well defined

since girth(H) > q > p > 2, and therefore edges of H intersect in at most one

vertex.

To see that F ∈ Forb(A), let C ¹ F be any 2-connected subgraph of F . If there

exists e ∈ E(H) such that V (C) ⊆ e, then C ¹ G, and since G ∈ Forb(A), it follows

that C 6∈ A. Otherwise, there are two vertices, say v1 and v2, in V (C) not incident

with the same edge of H. Since C is 2-connected, these two vertices must be both

on some cycle C ′ in C. The length of C ′ is at least the length of the shortest cycle

in H, that is,

|V (C ′)| ≥ girth(H) > q = max{|V (A)| : A ∈ A}.

Therefore, |V (C)| > max{|V (A)| : A ∈ A}, and thus C 6∈ A.
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Therefore it suffices to show that F
ind−→ (G)K1

r . Let ∆ : V (F ) → [1, r]. Since

V (F ) = V (H), and χ(H) > r, there exists e ∈ E(H) such that e is monochromatic

under ∆. However, F [e] is then a monochromatic copy of G.

8.4 Triangle-free graphs

The following theorem is a traditional example and a nice “nugget” from the field

of Restricted Ramsey theory.

Theorem 8.4.1 (Nešetřil and Rödl, 1975 [104]). Let r ∈ Z+. For every G ∈

Forb(K3), there exists an F ∈ Forb(K3) such that

F
ind−→ (G)K2

r .

In fact, much more can be proved. Recall that a clique in a graph is a subgraph

which is complete, and the clique number of a graph G, denoted cl(G), is the size

of the largest clique in G.

Theorem 8.4.2 (Nešetřil and Rödl, 1981 [109]). Let r, a ∈ Z+. For every G ∈

Forb(Ka), there exists a graph F ∈ Forb(Ka) such that

F
ind−→ (G)K2

r .
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Outline of proof. Follow the proof of Theorem 5.5.4. Note that cl(P 0) = cl(G),

and observe that the inductive construction and the amalgamations taking place

at each step preserve the clique number. Therefore, for every i ∈ [1,
(

s
2

)
], cl(P i) =

cl(P i−1), and since P (s
2) ind−→ (G)K2

r , P (s
2) is the desired graph.

The following theorem exploits the proof of Theorem 5.5.4 even more:

Theorem 8.4.3 (Nešetřil and Rödl, 1981 [109]). For any r,m ∈ Z+, there exists a

graph F such that F −→ (Km)K2
r , and any two copies of Km in F intersect in at

most one edge.

Proof. Again apply the construction in the proof of Theorem 5.5.4 with G = Km,

and notice that the inductive construction preserves the property that any two

complete graphs intersect in at most two vertices.



Chapter 9

Ramsey minimal graphs

9.1 Definitions

In this section, all colourings are edge colourings in two colours. For graphs G1,

G2, a graph F is weakly (G1, G2)-minimal iff both F −→ (G1, G2)
K2
2 , and for any

proper subgraph F ′ ( F , F ′ 6−→ (G1, G2)
K2
2 . Let Rmin(G1, G2) denote the family of

all weakly (G1, G2)-minimal graphs. The graph F is strongly (G1, G2)-minimal iff

both F
ind−→ (G1, G2)

K2
2 , and for any proper subgraph F ′ ( F , F ′ ind

6−→ (G1, G2)
K2
2 .

Let R∗
min(G1, G2) denote the family of all strongly (G1, G2)-minimal graphs.

A pair of graphs (G1, G2) is weakly (resp. strongly) Ramsey-finite iff Rmin(G1, G2)

193
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(resp. R∗
min(G1, G2)) is finite and weakly (resp. strongly) Ramsey-infinite otherwise.

Consider the following example:

Theorem 9.1.1 (Burr, Erdős, Faudree, Rousseau, and Schelp, 1981 [18]). For all

k ∈ Z+, C2k+1 is both strongly and weakly (P2, P2)-minimal, and therefore (P2, P2)

is both strongly and weakly Ramsey-infinite.

Proof. In both the weak and strong cases the same proof works, so only the proof

of the weak case is presented here. Let k ∈ Z+, and let ∆ : E(C2k+1) → {red, blue}.

Then there must be two adjacent edges that receive the same colour. Therefore

C2k+1 −→ (P2, P2)
K2
2 .

If any edge is removed from C2k+1, the remaining edges can be alternately coloured

red and blue, producing no monochromatic P2, and since δ(C2k+1) > 0, removing

any vertex removes an edge as well, proving that C2k+1 is weakly (P2, P2)-minimal.

Characterizing the pairs of graphs that are Ramsey-finite (or Ramsey-infinite) was

a problem asked by Nešetřil and Rödl in the mid 1970’s (see [37]). Today this

problem is central to the subfield of Ramsey minimal graphs.
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9.2 Classic minimal graph Ramsey results

One of the earliest theorems in the field of Ramsey minimal graphs was motivated

by a conjecture due to Nešetřil, namely that for any a, b ∈ Z+, the pair (Ka, Kb)

is Ramsey-infinite (both strongly and weakly, since in this case all results are both

weak and strong).

Theorem 9.2.1 (Burr, Erdős and Lovász, 1976 [21]). For all a, b ≥ 3, and d ∈ Z+,

there exists F ∈ Rmin(Ka, Kb) such that ∆(F ) ≥ d. Therefore (Ka, Kb) is Ramsey-

infinite (both weakly and strongly).

Some widely cited results in the field of Ramsey minimal graphs are the following

theorems due to Nešetřil and Rödl (published in 1978). Recall that for any n ∈ Z+,

a graph is said to be n-connected if at least n points must be removed to disconnect

the graph (note that every connected graph is at least 1-connected). A graph is said

to be 2.5-connected iff it is 2-connected, and the removing any two points connected

by an edge does not disconnect the graph.

Theorem 9.2.2 (Nešetřil and Rödl, 1978 [107]). For every 2.5-connected graph G,

(G,G) is strongly Ramsey-infinite.

Theorem 9.2.3 (Nešetřil and Rödl, 1978 [107]). For every 3-connected graph G,

(G,G) is weakly Ramsey-infinite.
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Theorem 9.2.4 (Nešetřil and Rödl, 1978 [107]). For every graph G with χ(G) ≥ 3,

(G,G) is both strongly and weakly Ramsey-infinite.

9.3 Weakly Ramsey minimal results for match-

ings

In the same paper as Theorem 9.2.1, Burr et al. provide some of the first Ramsey

finite pairs.

Theorem 9.3.1 (Burr, Erdős and Lovász, 1976 [21]). Rmin(2K2, 2K2) = {3K2, C5},

and for all m,n ∈ Z+, (mK2, nK2) is weakly Ramsey-finite.

Burr et al. prove Theorem 9.3.1 by showing essentially that any minimal graph that

arrows (mK2, nK2)
K2
2 has at most 2(m + n)2 vertices, proving that there are only

finitely many such graphs.

Two years later, Theorem 9.3.1 was generalized to only require one of the two graphs

be a matching.

Theorem 9.3.2 (Burr, Erdős, Faudree, and Schelp, 1978 [20]). For any m ∈ Z+,

and any finite graph G, (mK2, G) is weakly Ramsey-finite.

Theorem 9.3.2 is proven using a similar argument as the proof of Theorem 9.3.1: it
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is shown that there exists c = c(m, G) such that any minimal graph F such that

F −→ (mK2, G)K2
r has at most c edges which, together with the fact that any such

minimal graph has no isolated vertices, proves that there are only finitely many.

The authors also suggest the following conjecture which is still open today:

Conjecture 9.3.3 (Burr, Erdős, Faudree, and Schelp 1978 [20]). Let G be a graph.

If for all graphs H, (G,H) is weakly Ramsey-finite, then there exists m ∈ Z+ such

that G ∼= mK2.

The following theorems show progress towards Conjecture 9.3.3, and follow from

two corollaries due to ÃLuczak in 1994 [92]:

Theorem 9.3.4. Let G be a graph. If for any forest H that is not a disjoint union of

stars, (G,H) is weakly Ramsey-finite, then there exists m ∈ Z+ such that G ∼= mK2.

Theorem 9.3.5. Let G be a graph. If for any m ∈ Z+, (G,K1,2m) is weakly Ramsey-

finite, then there exists m ∈ Z+ such that G ∼= mK2.

9.4 Weakly Ramsey minimal results for stars and

forests

By Theorem 9.2.3, if G is 3-connected, Rmin(G, G) is infinite, and by Theorem 9.2.4,

if G contains an odd cycle, Rmin(G,G) is again infinite. When one of both of G1 and
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G2 is acyclic, Rmin(G1, G2) may be finite or infinite. So, e.g., in the next theorem,

when G1 = G2 are both odd stars, then Rmin(G,G) is finite.

Theorem 9.4.1 (Burr, Erdős and Lovász, 1976 [21]). For any graph F ,

F −→ (K1,n, K1,n)K2
2

iff ∆(F ) ≥ 2n − 1 or, if n is even, F contains a component which is regular of

degree 2n− 2 with an odd number of points.

Note that Theorem 9.4.1 implies (since F = K1,2n−1 is the smallest graph such

that ∆(F ) ≥ 2n − 1) that for odd n, Rmin(K1,n, K1,n) = {K1,2n−1}. For n even,

Theorem 9.4.1 does not immediately reveal if Rmin(K1,n, K1,n) is finite or infinite.

Theorem 9.4.2 (Burr, Erdős, Faudree, Rousseau, Schelp, 1981 [18]). Let s, t ∈ Z+.

If both s and t are odd, Rmin(K1,s, K1,t) = {K1,s+t−1}. Otherwise, Rmin(K1,s, K1,t)

is infinite.

In fact, Burr et al. proved more than Theorem 9.4.2. Call a star K1,n non-trivial if

n > 1.

Theorem 9.4.3 (Burr, Erdős, Faudree, Rousseau, Schelp, 1981 [18]). If G1 and G2

are unions of non-trivial stars, then Rmin(G1, G2) is finite if and only if G1 and G2

are both odd stars.

In 1991, Faudree classified for which forests G1 and G2 the pair (G1, G2) is weakly

Ramsey-finite.
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Theorem 9.4.4 (Faudree, 1991 [51]). For any two forests G1 and G2, (G1, G2) is

weakly Ramsey-finite if and only if one of the following holds:

1. One of G1 and G2 is a matching (see Theorem 9.3.2),

2. There exist x, y ∈ Z+, and odd integers m,n such that G1
∼= K1,m ∪ xK2 and

G2
∼= K1,n ∪ yK2,

3. There exist x, y ∈ Z+, x sufficiently large, s, n, m1, . . . , ms ∈ Z+, with n and

m1 odd, and m1 ≥ n + m2 − 1, such that G1
∼= K1,n ∪ xK2, and G2

∼=
⋃s

i=1 K1,mi
∪ yK2

Theorem 9.4.5 (Burr, Erdős, Faudree, Rousseau, Schelp, 1980 [17]). Let n, k ∈

Z+, and let {G1, . . . , Gn} be any set of 2-connected graphs. ThenRmin(
⋃n

i=1 Gi, K1,k)

is infinite.

ÃLuczak later showed that as soon as one of the graphs is no longer a forest, the pair

is weakly Ramsey-infinite.

Theorem 9.4.6 (ÃLuczak, 1994 [92]). For any graph G1 containing at least one cycle,

and for any forest G2 which is not a matching, the set Rmin(G1, G2) is infinite.



9.5. Explicit sets of Ramsey minimal graphs 200

9.5 Explicit sets of Ramsey minimal graphs

After determining whether the pair (G1, G2) is (weakly or strongly) Ramsey-infinite

or not, one can ask to classify the elements of the setsRmin(G1, G2) andR∗
min(G1, G2).

Only very few results of this type are known. Consider the following example:

Theorem 9.5.1 (see, e.g., [20]). Rmin(K2, H) = R∗
min(K2, H) = {H}.

Proof. Firstly, note that H ∈ Rmin(K2, H)∩R∗
min(K2, H). Secondly, note that any

graph that arrows (K2, H)K2
2 (either weak or induced) must contain a copy (weak

or induced) of H.

Burr et al. [21] proved that Rmin(2K2, 2K2) = {3K2, C5} (see Theorem 9.3.1),

and later [18] that when s and t are odd, Rmin(K1,s, K1,t) = {K1,s+t−1} (see Theo-

rem 9.4.2).

Theorem 9.5.2 (Burr, Erdős, Faudree, and Schelp, 1978 [20]). The graphs in Fig-

ure 9.1 are the only weakly Ramsey-minimal graphs for (2K2, K3).

Figure 9.1: The members of Rmin(2K2, K3).



9.6. Minimal ordered Ramsey graphs 201

In the last ten years, the following weakly Ramsey-minimal sets have been charac-

terized:

(a) Rmin(2K2, K1,n) (see [99]),

(b) Rmin(2K2, tK2) (see [100]),

(c) Rmin(K1,2, K1,m) (see [11]),

(d) Rmin(K1,2, K3) (see [12]).

In [99], the following sets are also explicitly determined:

Rmin(2K2, K1,2) = {2K1,2, C4, C5},

and Rmin(2K2, K1,3) is exactly the collection of graphs in Figure 9.2.

In [100], for t ≤ 5, the setsRmin(2K2, tK2) are also explicitly determined. Borowiecki

et al. [11], in addition to classifying the elements ofRmin(K1,2, K1,m), produce, for m

and n odd integers, a sufficient condition for a graph to belong to Rmin(K1,m, K1,n).

9.6 Minimal ordered Ramsey graphs

Let (F,≤) and (G,≤) be ordered graphs, and assume that (F,≤)
ind−→ (G,≤)K2

2 .

Then F is said to be minimal ordered Ramsey iff for every proper subgraph F ′ ( F ,
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Figure 9.2: The members of Rmin(2K2, K1,3).

(F ′,≤)
ind

6−→ (G,≤)K2
2 . In 1990, Gunderson [68] proposed the problem of finding

minimal ordered Ramsey graphs, and presented a few trivial examples, together

with the following first non-trivial example:

Theorem 9.6.1 (Gunderson, 1990 [68]). Let (G,≤) and (F,≤) be as in Figure 9.3.

Then (F,≤) is minimal ordered Ramsey for (G,≤).

For any two graphs G1, G2, let r̂ind(G1, G2) denote the least integer e such that there

exists a graph F with exactly e edges such that F
ind−→ (G1, G2)

K2
2 . The number
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Figure 9.3: A non-trivial minimal ordered Ramsey graph (F,≤) for (G,≤)

r̂ind(G1, G2) is the size Ramsey number . The following conjecture arose from the

study of minimal ordered Ramsey graphs.

Conjecture 9.6.2 (Gunderson [68]). Let F and G be finite graphs, and assume

that F
ind−→ (G)K2

2 . Let G′ be such that G ( G′ and V (G) = V (G′). Then if either

|V (F )| = Rind(G,G), or |E(F )| = r̂ind(G,G), then G′ 6¹ F .

9.7 Minimal Ramsey minimum degree

Recently, Fox and Lin [54] considered the following Ramsey-minimal problem: for

any finite graph G, what is the value of s(G) = min{δ(F ) : F ∈ Rmin(G,G)}? They

produced the following theorems:

Theorem 9.7.1 (Fox and Lin, 2007 [54]). For all graphs G,

2δ(G)− 1 ≤ s(G) ≤ R(G, G)− 1.
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Theorem 9.7.2 (Fox and Lin, 2007 [54]). For all k ∈ Z+, s(Kk) = (k − 1)2, and

for all a, b ∈ Z+, s(Ka,b) = 2 min{a, b} − 1.



Chapter 10

Colouring incomplete graphs

10.1 Introduction

So far in this thesis it has been shown (Observation 4.1.1 and Theorem 5.7.3 respec-

tively) that for any r ∈ Z+, and any graphs G and H, the numbers R(G; H; r) and

Rind(G; H; r) exist when H is complete; that is, when H is complete, for any graph

G, there exists graphs F1 and F2 such that F1 −→ (G)H
r , and F2

ind−→ (G)H
r . When

H is not complete, the situation is more complicated, as exhibited by the following

theorem.

Theorem 10.1.1. For any graph F , F 6→ (C4)
P2
2 , and F

ind

6−→ (C4)
P2
2 . Thus

R(C4, P2; 2) and Rind(C4; P2; 2) do not exist.

205
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Proof. The same proof works for both the induced and the non-induced cases, so

only the non-induced case is presented here. Let F be any graph. Define a total

(linear) ordering “ < ” on V (F ) in any way. Define a 2-colouring ∆ :
(

F
P2

) →

{red, blue} as follows: let P ′
2 ∈

(
F
P2

)
, and let x1, {x1, x2}, x2, {x2, x3}, x3 be the

vertices and edges of P ′
2. If x2 > x1 and x2 > x3 (in the fixed but arbitrary

ordering) then let ∆(P ′
2) = red. If x2 < x1 and x2 < x3 then let ∆(P ′

2) = blue.

Otherwise, the colour does not matter (let ∆(P ′
2) = red, say).

Let C ′
4 ∈

(
F
C4

)
, and assume V (C ′

4) = {v1, v2, v3, v4}, and v1 and v4 are the smallest

and greatest elements respectively with respect to the total linear ordering on F .

By the definition of ∆, the copy of P2 inside C ′
4 with v1 as its middle point must be

blue, and the copy of P2 with v4 in the middle must be coloured red. Therefore C ′
4

contains both a red copy of P2 and a blue copy of P2, and since C ′
4 was an arbitrary

copy of C4 in F , every C4 in F contains two colours. Finally, since the colouring

was defined for any arbitrary ordering, and one can always order any finite graph,

the result follows.

This problem can in fact be found whenever H is non-empty and non-complete.

Theorem 10.1.2 (Nešetřil and Rödl, 1975 [103]). Let H be a non-empty, non-

complete graph. Then there exists a graph G such that R(G; H; 2) does not exist.

Proof. (as given in [121, p. 195]) Note that since H is neither complete nor
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empty, there are at least two orderings ≤1 and ≤2 of V (H) such that (H,≤1) and

(H,≤2) are non-isomorphic. By Theorem 5.8.3, let G be a finite graph such that

G
ind−→ord (H,≤1), and G

ind−→ord (H,≤2).

Let F be any graph, and let ≤ be an arbitrary ordering of V (F ). Define ∆ :
(

F
H

) →

{red, blue} by

∆(H ′) =





red if (H ′,≤) ∼= (H ′,≤1), and

blue otherwise.

Then, by the definition of G, each G′ ∈ (
F
G

)
contains copies of (H,≤1) and (H,≤2),

and therefore is not monochromatic under ∆.

10.2 A classification

The problem of classifying which triples (G,H, r) can F be found such that F
ind−→

(G)H
r was addressed by Gunderson, Rödl and Sauer in 1990 [69]. The notation in

this section is due to Gunderson. Given a hypergraph H, define

ORD(H) = {(H,≤1), (H,≤2), . . . , (H,≤k)}

to be the set of all distinct ordered hypergraphs which, without the ordering, are

copies of H, that is, H together with every possible ordering of V (H). For exam-
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ple, ORD(P2) is the set of all possible orderings of P2, given in Figure 10.1, and

ORD(C4) is given in Figure 10.2.

Figure 10.1: The non-isomorphic orderings of P2

Figure 10.2: The non-isomorphic orderings of C4

Given H and (G,≤∗), let

DO(H,G,≤∗) = {(H,≤) ∈ ORD(H) :

(
G,≤∗
H,≤

)
6= ∅}

be the set of distinct orderings on H that can be found as induced subgraphs in

(G,≤∗). For example,

DO(P2, C4,≤2) = {(P2,≤1), (P2,≤3)}.
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Finally, let

mdo(H, G) = min{|DO(H,G,≤j)| : (G,≤j) ∈ ORD(G)}

be the minimum number of distinct orderings on H given any ordering of G. For

example, mdo(P2, C4) = 2.

For another example, given some n ∈ Z+, and some graph G, consider the set

DO(Kn, G,≤j). If G does not contain a copy of Kn, then DO(Kn, G,≤j) = ∅.

If G does contain a copy of Kn, then since all orderings on complete graphs are

isomorphic, |ORD(Kn)| = 1, and so |DO(Kn, G,≤j)| = 1 and mdo(Kn, G) ≤ 1.

The reason that there does not exist a graph F such that F
ind−→ (C4)

P2
2 is because

mdo(P2, C4) = 2, which means there is a way to colour the P2’s according to their

ordering (or order type) to ensure that every C4 contains two colours. The fol-

lowing theorem demonstrates this fact, and is proved directly using the Ordered

Hypergraph theorem (Theorem 5.8.1).

Theorem 10.2.1 (Prömel and Voigt, 1985 [120]). Given r ∈ Z+, and G,H graphs

such that mdo(H,G) = 1, then there exists a graph F such that

F
ind−→ (G)H

r .

Proof. Let r ∈ Z+, and let G and H be graphs such that mdo(H,G) = 1.

By the definition of mdo(H, G), there exists an ordering on G, say ≤, so that
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|DO(H, G,≤)| = 1 (every induced H-subgraph is order-isomorphic to, say, (H,≤)).

By the Ordered Hypergraph theorem, there exists an ordered graph (F,≤) such

that (F,≤)
ind−→ (G,≤)

(H,≤)
r . The claim is then that F , the unordered version of

(F,≤), satisfies

F
ind−→ (G)H

r .

Let ∆ :
(

F
H

)
ind

→ {1, . . . , r}. Define an r-colouring ∆∗ :
(

F,≤
H,≤

)
ind

→ {1, . . . , r}

defined by ∆∗((H ′,≤)) = ∆(H ′). By the choice of F , there exists a monochromatic

(G∗,≤) ∈ (
F,≤
G,≤

)
ind

such that ∆∗ is constant on
(

G∗,≤
H,≤

)
ind

. Since |DO(H, G,≤)| = 1,

(H ′,≤) ∈ (
G∗,≤
H,≤

)
ind

iff H ′ ∈ (
G∗
H

)
, and therefore ∆ is constant on

(
G∗
H

)
ind

.

However, Theorem 10.2.1 appears to be far from an if and only if statement, as

shown by the following theorem:

Theorem 10.2.2 (Gunderson, Rödl, and Sauer, 1990 [69]). For every non-complete,

non-empty graph H, if either H or H is 2-connected, then there exist graphs F and

G such that mdo(H, G) ≥ 2, and F
ind−→ (G)H

r .

Gunderson, Rödl and Sauer succeeded in characterizing all triples (G,H, r) such

that there exists a graph F with F
ind−→ (G)H

r . Given two hypergraphs G,H,

define the hypergraph SH,G as the graph with vertex set ORD(H) and edge set

E(SH,G) = {DO(H,G,≤) : (G,≤) ∈ ORD(G)}. Let χ(SH,G) denote the (weak)

chromatic number of SH,G.



10.2. A classification 211

Theorem 10.2.3 (Gunderson, Rödl, and Sauer, 1990 [69]). For any hypergraphs

G,H, there exists F such that F
ind−→ (G)H

r iff χ(SH,G) > r.

Three years later, Gunderson, Rödl, and Sauer published [70] a theorem charac-

terizing explicitly the set of graphs G for which there exists a graph F such that

F
ind−→ (G)P2

2 .



Appendix A

Graph Theory

Throughout this thesis, unless otherwise noted, all graphs are finite. A graph G is

an ordered pair (V (G), E(G)), where V = V (G) is a set, and E = E(G) ⊆ [V ]2. Let

G,H be graphs. An isomorphism between G and H is a bijection f : V (G) → V (H)

such that {x, y} ∈ E(G) iff {f(x), f(y)} ∈ E(H). If there exists an isomorphism

between two graphs G and H, say G and H are isomorphic, and write G ∼= H.

A graph H is said to be a subgraph of G, denoted H ⊆ G, iff V (H) ⊆ V (G)

and E(H) ⊆ E(G) ∩ [V (H)]2. For any two graphs G and H, an embedding of

H into Gis a function f : V (H) → V (G) such that for each {v1, v2} ∈ E(H),

{f(v1), f(v2)} ∈ E(G), and a copy of H in G is an image of such an embedding.

212



Graph Theory 213

The set of all copies of H in G is denoted

(
G

H

)
.

The graph H is said to be an induced subgraph of G, denoted H ¹ G, iff V (H) ⊆

V (G) and E(H) = E(G) ∩ [V (H)]2. For any two graphs G and H, an induced

embedding of H into G is a function f : V (H) → V (G) such that {v1, v2} ∈ E(H)

iff {f(v1), f(v2)} ∈ E(G), and an induced copy of H in G is an image of such an

induced embedding. The set of all induced copies of H in G is denoted

(
G

H

)

ind

.

A graph G is complete if every pair of vertices in G is connected by an edge; the

complete graph on n vertices is denoted by Kn. A graph G is k-partite if there

exists a partition V (G) = V1 ∪ · · · ∪ Vk such that for every {x, y} ∈ E(G), there

exist i, j ∈ [1, k], i 6= j, such that x ∈ Vi and y ∈ Vj. A 2-partite graph is called

bipartite. For any m,n ∈ Z+, the complete bipartite graph Km,n is the bipartite

graph with partite sets A and B containing m and n elements respectively, and

E(Km,n) = {{a, b} : a ∈ A, b ∈ B}.

For any graph G, and any vertex v ∈ V (G), the degree of v in G is

degG(v) = |{e ∈ E(G) : v ∈ e}|.
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The neighbourhood of v in G, denoted NG(v), is the set NG(v) = {x ∈ V (G) :

{x, v} ∈ E(G)}. Note that for all v ∈ V (G), degG(v) = |NG(v)|. When it is clear

which graph the degree or the neighbourhood is being considered in, the “G” may be

omitted. The following lemma is a traditional lemma in Graph theory (see e.g. [7]).

Lemma A.0.4 (Handshaking Lemma). For any graph G,

∑

v∈V (G)

deg(v) = 2|E(G)|.

For any n ∈ Z+, a path of length n in a graph G is an alternating sequence of distinct

vertices and edges v1, e1, v2, e2, . . . , en, vn+1 such that for all i ∈ [1, n], ei = {vi, vi+1}.

For two vertices u and v, auv-path is a path starting at u and ending at v. A cycle

of length n in G is an alternating sequence of distinct vertices and edges of the form

v1, e1, . . . , vn, en, v1, such that for all i ∈ [1, n−1], ei = {vi, vi+1}, and en = {vn, v1}.

For any n ∈ Z+, Pn denotes a path on n edges (note that there is some disagreement

in graph theory as to whether Pn should denote a path with n edges or a path with

n vertices). Let Cn denotes a cycle on n edges. For any graph G, the complement

of G is the graph G = (V (G), [V (G)]2 \ E(G)).

A graph G is connected iff for any u, v ∈ V (G), there is a uv-path in G. A component

of G is a maximal connected subgraph of G.

A forest is a acyclic graph, the components of which are called trees . A leaf in a

tree is a vertex of degree one. A tree is said to be locally finite if the degree of every
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vertex is finite. A rooted tree is a tree with some vertex identified as the root , and

a branch in a rooted tree T with root x is a component in the graph formed by

removing x from T .

A set X of vertices in a graph G is said to be an independent set iff X does not

contain any edge, i.e.,

E(G) ∩ [X]2 = ∅.

The independence number of G, denoted α(G), is the cardinality of the largest

independent set of G.

A clique in a graph is a complete subgraph. For r ∈ Z+, a good vertex r-colouring

of a graph G is an r-colouring of V (G) with the added property that no edge is

completely contained within a colour class. i.e., a good r-colouring is a partition of

V (G) = V1∪ . . .∪Vr, with the added property that for all {x, y} ∈ E(G), there exist

i, j, i 6= j, such that x ∈ Vi and y ∈ Vj. If for some graph G, there exists a good

vertex r-colouring, then G is said to be r-colourable. When it causes no confusion,

a good vertex r-colouring is also referred to as simply a good r-colouring. The

chromatic number of G, denoted χ(G), is the smallest r such that G is r-colourable.

For graphs G and H such that V (G) ∩ V (H) = ∅, the disjoint union of G and H,

denoted G ∪̇H, is the graph (V (G) ∪ V (H), E(G) ∪E(H)). This definition can be

extended to graphs who have vertices in common as follows: for any graphs G and
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H, V (G ∪̇H) = (V (G)× {0}) ∪ (V (H)× {1}), and

E(G ∪̇H) = { {(x, 0), (y, 0)} : {x, y} ∈ E(G) } ∪

{ {(x, 1), (y, 1)} : {x, y} ∈ E(H) }.

For any two graphs G and H, let G+H denote the graph with V (G+H) = V (G∪̇H),

and

E(G + H) = E(G ∪̇H) ∪ { {(a, 0), (b, 1)} : a ∈ V (G), b ∈ V (H)}

(that is, the disjoint union of G and H, together with every vertex in G connected

to every vertex in H).

For any connected graph G, and any n ∈ Z+, let nG denote the graph with n

components, each isomorphic to G. So, e.g., mK2 is a collection of m disjoint

edges–called a matching .

For any graph G and v ∈ V (G), let G \ {v} denote the graph formed by removing

v, and all edges attached to v, from G. If for some graph G, there exists a graph

G′ such that for any edge e ∈ E(G), G′ ∼= (V (G), E(G) \ {e}), then denote G′ by

G \ e. Define G+ e analogously. Similarly, if for some graphs G and H, there exists

a graph G′ such that for any H ′ ∈ (
G
H

)
, G′ ∼= (V (G), E(G) \E(H ′)), then denote G′

by G \ E(H). For example, K5 \ P2 is the graph formed by removing two incident

edges from K5.
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A hypergraph G is an ordered pair of sets (V (G), E(G)), where E = E(G) ⊆ P(V ),

the collection of all subsets of V = V (G). As with graphs, the elements of V = V (G)

are called vertices, but the elements of E = E(G) are called hyperedges . Note

that by this definition, singletons may be edges. To avoid trivialities, singletons

are usually not allowed to be edges in hypergraphs. Note that when helpful a

script notation can be used to denote a hypergraph (e.g., GorH) to differentiate

graphs from hypergraphs. For k ∈ Z+, a hypergraph H is said to be k-uniform if

E ⊆ [V ]k. By definition, a graph is a 2-uniform hypergraph. Isomorphisms between

hypergraphs are defined analogously to those on graphs, as are subhypergraphs

(induced and non-induced).

For any hypergraph G, and any vertex v ∈ V (G), the degree of v in G, written

degG(v), is degG(v) = |{e ∈ E(G) : v ∈ e}|. The neighbourhood of v in G, denoted

NG(v), is the set NG(v) = {x ∈ V (G) : ∃e ∈ E(G) s.t. {x, v} ⊆ e}. Note that

when G is a hypergraph, it is not necessarily true that for all v ∈ V (G), degG(v) =

|NG(v)| as is true in the graph case. For any A ⊆ V (G), A 6= ∅, let NG(A) =

⋂
v∈A NG(v). When it is clear which hypergraph the degree or the neighbourhood

is being considered in, the “G” may be omitted.

A hypergraph G is complete iff E(G) = P(G), and for any k ∈ Z+, a k-uniform

hypergraph is complete if E(G) = [V (G)]k.
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A set of vertices X inside a hypergraph G is said to be an independent set iff

E(G)∩P(X) = ∅. The independence number of G, denoted α(G), is the cardinality

of the largest independent set of G.

Let r ∈ Z+. A good vertex r-colouring of a hypergraph G is an r-colouring of V (G)

with the added property that no edge is completely contained within a partition

class. i.e., a good r-colouring is a partition of V (G) = V1 ∪ · · · ∪Vr, with the added

property that for all e ∈ E(G), there exist i, j, i 6= j, such that e ∩ Vi 6= ∅ and

e∩Vj 6= ∅. If for some hypergraph G, there exists a good vertex r-colouring, then G

is said to be r-colourable. When it causes no confusion, a good vertex r-colouring is

also referred to as simply a good r-colouring. The chromatic number of G, denoted

χ(G), is the smallest r such that G is r-colourable.
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[70] D. Gunderson, V. Rödl, and N. W. Sauer, Finite induced graph Ramsey

theory: on partitions of subgraphs, J. Combin. Theory Ser. B 59 (1993),

199–209. 211

[71] A. W. Hales and R. I. Jewett, Regularity and positional games, Trans. Amer.

Math. Soc. 106 (1963), 222–229. 110

[72] F. Harary, Graph theory, Addison-Wesley Publishing Co., Reading, MA,

1969. 160
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